https://github.com/torvalds/linux
Revision a022f7d575bb68c35be0a9ea68860411dec652fe authored by Linus Torvalds on 09 July 2021, 19:05:33 UTC, committed by Linus Torvalds on 09 July 2021, 19:05:33 UTC
Pull more block updates from Jens Axboe:
 "A combination of changes that ended up depending on both the driver
  and core branch (and/or the IDE removal), and a few late arriving
  fixes. In detail:

   - Fix io ticks wrap-around issue (Chunguang)

   - nvme-tcp sock locking fix (Maurizio)

   - s390-dasd fixes (Kees, Christoph)

   - blk_execute_rq polling support (Keith)

   - blk-cgroup RCU iteration fix (Yu)

   - nbd backend ID addition (Prasanna)

   - Partition deletion fix (Yufen)

   - Use blk_mq_alloc_disk for mmc, mtip32xx, ubd (Christoph)

   - Removal of now dead block request types due to IDE removal
     (Christoph)

   - Loop probing and control device cleanups (Christoph)

   - Device uevent fix (Christoph)

   - Misc cleanups/fixes (Tetsuo, Christoph)"

* tag 'block-5.14-2021-07-08' of git://git.kernel.dk/linux-block: (34 commits)
  blk-cgroup: prevent rcu_sched detected stalls warnings while iterating blkgs
  block: fix the problem of io_ticks becoming smaller
  nvme-tcp: can't set sk_user_data without write_lock
  loop: remove unused variable in loop_set_status()
  block: remove the bdgrab in blk_drop_partitions
  block: grab a device refcount in disk_uevent
  s390/dasd: Avoid field over-reading memcpy()
  dasd: unexport dasd_set_target_state
  block: check disk exist before trying to add partition
  ubd: remove dead code in ubd_setup_common
  nvme: use return value from blk_execute_rq()
  block: return errors from blk_execute_rq()
  nvme: use blk_execute_rq() for passthrough commands
  block: support polling through blk_execute_rq
  block: remove REQ_OP_SCSI_{IN,OUT}
  block: mark blk_mq_init_queue_data static
  loop: rewrite loop_exit using idr_for_each_entry
  loop: split loop_lookup
  loop: don't allow deleting an unspecified loop device
  loop: move loop_ctl_mutex locking into loop_add
  ...
2 parent s 3de6295 + a731763
Raw File
Tip revision: a022f7d575bb68c35be0a9ea68860411dec652fe authored by Linus Torvalds on 09 July 2021, 19:05:33 UTC
Merge tag 'block-5.14-2021-07-08' of git://git.kernel.dk/linux-block
Tip revision: a022f7d
pwm-tegra.c
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * drivers/pwm/pwm-tegra.c
 *
 * Tegra pulse-width-modulation controller driver
 *
 * Copyright (c) 2010-2020, NVIDIA Corporation.
 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
 *
 * Overview of Tegra Pulse Width Modulator Register:
 * 1. 13-bit: Frequency division (SCALE)
 * 2. 8-bit : Pulse division (DUTY)
 * 3. 1-bit : Enable bit
 *
 * The PWM clock frequency is divided by 256 before subdividing it based
 * on the programmable frequency division value to generate the required
 * frequency for PWM output. The maximum output frequency that can be
 * achieved is (max rate of source clock) / 256.
 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
 * 408 MHz/256 = 1.6 MHz.
 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
 *
 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
 * To achieve 100% duty cycle, program Bit [24] of this register to
 * 1’b1. In which case the other bits [23:16] are set to don't care.
 *
 * Limitations:
 * -	When PWM is disabled, the output is driven to inactive.
 * -	It does not allow the current PWM period to complete and
 *	stops abruptly.
 *
 * -	If the register is reconfigured while PWM is running,
 *	it does not complete the currently running period.
 *
 * -	If the user input duty is beyond acceptible limits,
 *	-EINVAL is returned.
 */

#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/pwm.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/slab.h>
#include <linux/reset.h>

#define PWM_ENABLE	(1 << 31)
#define PWM_DUTY_WIDTH	8
#define PWM_DUTY_SHIFT	16
#define PWM_SCALE_WIDTH	13
#define PWM_SCALE_SHIFT	0

struct tegra_pwm_soc {
	unsigned int num_channels;

	/* Maximum IP frequency for given SoCs */
	unsigned long max_frequency;
};

struct tegra_pwm_chip {
	struct pwm_chip chip;
	struct device *dev;

	struct clk *clk;
	struct reset_control*rst;

	unsigned long clk_rate;
	unsigned long min_period_ns;

	void __iomem *regs;

	const struct tegra_pwm_soc *soc;
};

static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
{
	return container_of(chip, struct tegra_pwm_chip, chip);
}

static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
{
	return readl(chip->regs + (num << 4));
}

static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
			     unsigned long val)
{
	writel(val, chip->regs + (num << 4));
}

static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
			    int duty_ns, int period_ns)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	unsigned long long c = duty_ns, hz;
	unsigned long rate, required_clk_rate;
	u32 val = 0;
	int err;

	/*
	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
	 * nearest integer during division.
	 */
	c *= (1 << PWM_DUTY_WIDTH);
	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);

	val = (u32)c << PWM_DUTY_SHIFT;

	/*
	 *  min period = max clock limit >> PWM_DUTY_WIDTH
	 */
	if (period_ns < pc->min_period_ns)
		return -EINVAL;

	/*
	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
	 * cycles at the PWM clock rate will take period_ns nanoseconds.
	 *
	 * num_channels: If single instance of PWM controller has multiple
	 * channels (e.g. Tegra210 or older) then it is not possible to
	 * configure separate clock rates to each of the channels, in such
	 * case the value stored during probe will be referred.
	 *
	 * If every PWM controller instance has one channel respectively, i.e.
	 * nums_channels == 1 then only the clock rate can be modified
	 * dynamically (e.g. Tegra186 or Tegra194).
	 */
	if (pc->soc->num_channels == 1) {
		/*
		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
		 * with the maximum possible rate that the controller can
		 * provide. Any further lower value can be derived by setting
		 * PFM bits[0:12].
		 *
		 * required_clk_rate is a reference rate for source clock and
		 * it is derived based on user requested period. By setting the
		 * source clock rate as required_clk_rate, PWM controller will
		 * be able to configure the requested period.
		 */
		required_clk_rate =
			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;

		err = clk_set_rate(pc->clk, required_clk_rate);
		if (err < 0)
			return -EINVAL;

		/* Store the new rate for further references */
		pc->clk_rate = clk_get_rate(pc->clk);
	}

	rate = pc->clk_rate >> PWM_DUTY_WIDTH;

	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);

	/*
	 * Since the actual PWM divider is the register's frequency divider
	 * field plus 1, we need to decrement to get the correct value to
	 * write to the register.
	 */
	if (rate > 0)
		rate--;

	/*
	 * Make sure that the rate will fit in the register's frequency
	 * divider field.
	 */
	if (rate >> PWM_SCALE_WIDTH)
		return -EINVAL;

	val |= rate << PWM_SCALE_SHIFT;

	/*
	 * If the PWM channel is disabled, make sure to turn on the clock
	 * before writing the register. Otherwise, keep it enabled.
	 */
	if (!pwm_is_enabled(pwm)) {
		err = clk_prepare_enable(pc->clk);
		if (err < 0)
			return err;
	} else
		val |= PWM_ENABLE;

	pwm_writel(pc, pwm->hwpwm, val);

	/*
	 * If the PWM is not enabled, turn the clock off again to save power.
	 */
	if (!pwm_is_enabled(pwm))
		clk_disable_unprepare(pc->clk);

	return 0;
}

static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	int rc = 0;
	u32 val;

	rc = clk_prepare_enable(pc->clk);
	if (rc < 0)
		return rc;

	val = pwm_readl(pc, pwm->hwpwm);
	val |= PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	return 0;
}

static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	u32 val;

	val = pwm_readl(pc, pwm->hwpwm);
	val &= ~PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	clk_disable_unprepare(pc->clk);
}

static const struct pwm_ops tegra_pwm_ops = {
	.config = tegra_pwm_config,
	.enable = tegra_pwm_enable,
	.disable = tegra_pwm_disable,
	.owner = THIS_MODULE,
};

static int tegra_pwm_probe(struct platform_device *pdev)
{
	struct tegra_pwm_chip *pwm;
	int ret;

	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
	if (!pwm)
		return -ENOMEM;

	pwm->soc = of_device_get_match_data(&pdev->dev);
	pwm->dev = &pdev->dev;

	pwm->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(pwm->regs))
		return PTR_ERR(pwm->regs);

	platform_set_drvdata(pdev, pwm);

	pwm->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(pwm->clk))
		return PTR_ERR(pwm->clk);

	/* Set maximum frequency of the IP */
	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
		return ret;
	}

	/*
	 * The requested and configured frequency may differ due to
	 * clock register resolutions. Get the configured frequency
	 * so that PWM period can be calculated more accurately.
	 */
	pwm->clk_rate = clk_get_rate(pwm->clk);

	/* Set minimum limit of PWM period for the IP */
	pwm->min_period_ns =
	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;

	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
	if (IS_ERR(pwm->rst)) {
		ret = PTR_ERR(pwm->rst);
		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
		return ret;
	}

	reset_control_deassert(pwm->rst);

	pwm->chip.dev = &pdev->dev;
	pwm->chip.ops = &tegra_pwm_ops;
	pwm->chip.npwm = pwm->soc->num_channels;

	ret = pwmchip_add(&pwm->chip);
	if (ret < 0) {
		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
		reset_control_assert(pwm->rst);
		return ret;
	}

	return 0;
}

static int tegra_pwm_remove(struct platform_device *pdev)
{
	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);

	pwmchip_remove(&pc->chip);

	reset_control_assert(pc->rst);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int tegra_pwm_suspend(struct device *dev)
{
	return pinctrl_pm_select_sleep_state(dev);
}

static int tegra_pwm_resume(struct device *dev)
{
	return pinctrl_pm_select_default_state(dev);
}
#endif

static const struct tegra_pwm_soc tegra20_pwm_soc = {
	.num_channels = 4,
	.max_frequency = 48000000UL,
};

static const struct tegra_pwm_soc tegra186_pwm_soc = {
	.num_channels = 1,
	.max_frequency = 102000000UL,
};

static const struct tegra_pwm_soc tegra194_pwm_soc = {
	.num_channels = 1,
	.max_frequency = 408000000UL,
};

static const struct of_device_id tegra_pwm_of_match[] = {
	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
	{ }
};
MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);

static const struct dev_pm_ops tegra_pwm_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
};

static struct platform_driver tegra_pwm_driver = {
	.driver = {
		.name = "tegra-pwm",
		.of_match_table = tegra_pwm_of_match,
		.pm = &tegra_pwm_pm_ops,
	},
	.probe = tegra_pwm_probe,
	.remove = tegra_pwm_remove,
};

module_platform_driver(tegra_pwm_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
MODULE_DESCRIPTION("Tegra PWM controller driver");
MODULE_ALIAS("platform:tegra-pwm");
back to top