Revision a311f4d8327a5051b11a6bcd1c44ed931d4ab261 authored by Jacob Quinn on 20 October 2022, 02:44:43 UTC, committed by GitHub on 20 October 2022, 02:44:43 UTC
As reported [here](https://discourse.julialang.org/t/test-failures-for-sockets-base-runtests-sockets/88898).

My guess on the original issue reported is that, for some reason, the host where the tests are run
is unable to listen on any ports, so we end up cycling through the entire UInt16 range (the test
starts at port 11011), but when we fail on port 65535, we do `addr.port + 1` and instead of wrapping
around as I believe this function intends to happen (as noted by the `addr.port == default_port` check
before we error), it gets promoted to `Int(65536)` which then throws an (unexpected) error in the `InetAddr`
constructor.

I'm not quite sure how to test this exactly though, because we'd need to simulate not being able
to listen on any ports? If anyone has any ideas, I'm all ears.
1 parent 0d52506
Raw File
worlds.jl
# This file is a part of Julia. License is MIT: https://julialang.org/license

# tests for accurate updating of method tables

using Base: get_world_counter
tls_world_age() = ccall(:jl_get_tls_world_age, UInt, ())
@test typemax(UInt) > get_world_counter() == tls_world_age() > 0

# test simple method replacement
begin
    g265a() = f265a(0)
    f265a(x::Any) = 1
    @test g265a() == 1
    @test Base.return_types(g265a, ()) == Any[Int]
    @test Core.Compiler.return_type(g265a, Tuple{}) == Int

    f265a(x::Any) = 2.0
    @test g265a() == 2.0

    @test Base.return_types(g265a, ()) == Any[Float64]
    @test Core.Compiler.return_type(g265a, Tuple{}) == Float64
end

# test signature widening
begin
    f265b(x::Int) = 1
    let ty = Any[1, 2.0e0]
        global g265b(i::Int) = f265b(ty[i])
    end
    @test g265b(1) == 1
    @test Base.return_types(g265b, (Int,)) == Any[Int]
    @test Core.Compiler.return_type(g265b, Tuple{Int,}) == Int

    f265b(x::Any) = 2.0
    @test g265b(1) == 1
    @test g265b(2) == 2.0
    @test Base.return_types(g265b, (Int,)) == Any[Union{Int, Float64}]
    @test Core.Compiler.return_type(g265b, Tuple{Int,}) == Union{Int, Float64}
end

# test signature narrowing
begin
    g265c() = f265c(0)
    f265c(x::Any) = 1
    @test g265c() == 1
    @test Base.return_types(g265c, ()) == Any[Int]
    @test Core.Compiler.return_type(g265c, Tuple{}) == Int

    f265c(x::Int) = 2.0
    @test g265c() == 2.0

    @test Base.return_types(g265c, ()) == Any[Float64]
    @test Core.Compiler.return_type(g265c, Tuple{}) == Float64
end

# test constructor narrowing
mutable struct A265{T}
    field1::T
end
A265_() = A265(1)
@test (A265_()::A265{Int}).field1 === 1
A265(fld::Int) = A265(Float64(fld))
@test (A265_()::A265{Float64}).field1 === 1.0e0

# test constructor widening
mutable struct B265{T}
    field1::T
    # dummy arg is present to prevent (::Type{T}){T}(arg) from matching the test calls
    B265{T}(field1::Any, dummy::Nothing) where {T} = new(field1) # prevent generation of outer ctor
end
  # define some constructors
B265(x::Int, dummy::Nothing) = B265{Int}(x, dummy)
let ty = Any[1, 2.0e0, 3.0f0]
    global B265_(i::Int) = B265(ty[i], nothing)
end
  # test for correct answers
@test (B265_(1)::B265{Int}).field1 === 1
@test_throws MethodError B265_(2)
@test_throws MethodError B265_(3)
@test Base.return_types(B265_, (Int,)) == Any[B265{Int}]
@test Core.Compiler.return_type(B265_, Tuple{Int,}) == B265{Int}

  # add new constructors
B265(x::Float64, dummy::Nothing) = B265{Float64}(x, dummy)
B265(x::Any, dummy::Nothing) = B265{UInt8}(x, dummy)

  # make sure answers are updated
@test (B265_(1)::B265{Int}).field1 === 1
@test (B265_(2)::B265{Float64}).field1 === 2.0e0
@test (B265_(3)::B265{UInt8}).field1 === 0x03

@test B265{UInt8} <: only(Base.return_types(B265_, (Int,))) <: B265
@test B265{UInt8} <: Core.Compiler.return_type(B265_, Tuple{Int,}) <: B265


# test oldworld call / inference
function wfunc(c1,c2)
    while true
        (f, args) = take!(c1)
        put!(c2, f(args...))
    end
end
function put_n_take!(v...)
    put!(chnls[1], v)
    take!(chnls[2])
end

g265() = [f265(x) for x in 1:3.]
wc265 = get_world_counter()
wc265_41332a = Task(tls_world_age)
@test tls_world_age() == wc265
(function ()
    global wc265_41332b = Task(tls_world_age)
    @eval f265(::Any) = 1.0
    global wc265_41332c = Base.invokelatest(Task, tls_world_age)
    global wc265_41332d = Task(tls_world_age)
    nothing
end)()
@test wc265 + 2 == get_world_counter() == tls_world_age()
schedule(wc265_41332a)
schedule(wc265_41332b)
schedule(wc265_41332c)
schedule(wc265_41332d)
@test wc265 == fetch(wc265_41332a)
@test wc265 + 1 == fetch(wc265_41332b)
@test wc265 + 2 == fetch(wc265_41332c)
@test wc265 + 1 == fetch(wc265_41332d)
chnls, tasks = Base.channeled_tasks(2, wfunc)
t265 = tasks[1]

wc265 = get_world_counter()
@test put_n_take!(get_world_counter, ()) == wc265
@test put_n_take!(tls_world_age, ()) == wc265
f265(::Int) = 1
@test put_n_take!(get_world_counter, ()) == wc265 + 1 == get_world_counter() == tls_world_age()
@test put_n_take!(tls_world_age, ()) == wc265

@test g265() == Int[1, 1, 1]
@test Core.Compiler.return_type(f265, Tuple{Any,}) == Union{Float64, Int}
@test Core.Compiler.return_type(f265, Tuple{Int,}) == Int
@test Core.Compiler.return_type(f265, Tuple{Float64,}) == Float64

@test put_n_take!(g265, ()) == Float64[1.0, 1.0, 1.0]
@test put_n_take!(Core.Compiler.return_type, (f265, Tuple{Any,})) == Float64
@test put_n_take!(Core.Compiler.return_type, (f265, Tuple{Int,})) == Float64
@test put_n_take!(Core.Compiler.return_type, (f265, Tuple{Float64,})) == Float64
@test put_n_take!(Core.Compiler.return_type, (f265, Tuple{Float64,})) == Float64

# test that reflection ignores worlds
@test Base.return_types(f265, (Any,)) == Any[Int, Float64]
@test put_n_take!(Base.return_types, (f265, (Any,))) == Any[Int, Float64]

# test for method errors
h265() = true
file = @__FILE__
Base.stacktrace_contract_userdir() && (file = Base.contractuser(file))
loc_h265 = "@ $(@__MODULE__) $file:$(@__LINE__() - 3)"
@test h265()
@test_throws TaskFailedException(t265) put_n_take!(h265, ())
@test_throws TaskFailedException(t265) fetch(t265)
@test istaskdone(t265)
let ex = t265.exception
    @test ex isa MethodError
    @test ex.f == h265
    @test ex.args == ()
    @test ex.world == wc265
    str = sprint(showerror, ex)
    wc = get_world_counter()
    cmps = """
        MethodError: no method matching h265()
        The applicable method may be too new: running in world age $wc265, while current world is $wc."""
    @test startswith(str, cmps)
    cmps = "\n  h265() (method too new to be called from this world context.)\n   $loc_h265"
    @test occursin(cmps, str)
end

# test for generated function correctness
# and min/max world computation validity of cache_method
f_gen265(x) = 1
@generated g_gen265(x) = f_gen265(x)
@generated h_gen265(x) = :(f_gen265(x))
f_gen265(x::Int) = 2
f_gen265(x::Type{Int}) = 3
@generated g_gen265b(x) = f_gen265(x)
@test h_gen265(0) == 2
@test g_gen265(0) == 1
@test f_gen265(Int) == 3
@test g_gen265b(0) == 3

# Test that old, invalidated specializations don't get revived for
# intermediate worlds by later additions to the method table that
# would have capped those specializations if they were still valid
f26506(@nospecialize(x)) = 1
g26506(x) = Base.inferencebarrier(f26506)(x[1])
z = Any["ABC"]
f26506(x::Int) = 2
g26506(z) # Places an entry for f26506(::String) in mt.name.cache
f26506(x::String) = 3
let cache = typeof(f26506).name.mt.cache
    # The entry we created above should have been truncated
    @test cache.min_world == cache.max_world
end
c26506_1, c26506_2 = Condition(), Condition()
# Captures the world age
result26506 = Any[]
t = Task(()->begin
    wait(c26506_1)
    push!(result26506, g26506(z))
    notify(c26506_2)
end)
yield(t)
f26506(x::Float64) = 4
let cache = typeof(f26506).name.mt.cache
    # The entry we created above should have been truncated
    @test cache.min_world == cache.max_world
end
notify(c26506_1)
wait(c26506_2)
@test result26506[1] == 3

# issue #38435
f38435(::Int, ::Any) = 1
f38435(::Any, ::Int) = 2
g38435(x) = f38435(x, x)
@test_throws MethodError(f38435, (1, 1), Base.get_world_counter()) g38435(1)
f38435(::Int, ::Int) = 3.0
@test g38435(1) === 3.0

# Invalidation
# ============

function method_instance(f, types=Base.default_tt(f))
    m = which(f, types)
    inst = nothing
    tt = Base.signature_type(f, types)
    specs = m.specializations
    if isa(specs, Nothing)
    elseif isa(specs, Core.SimpleVector)
        for i = 1:length(specs)
            mi = specs[i]
            if mi isa Core.MethodInstance
                if mi.specTypes <: tt && tt <: mi.specTypes
                    inst = mi
                    break
                end
            end
        end
    else
        Base.visit(specs) do mi
            if mi.specTypes === tt
                inst = mi
            end
        end
    end
    return inst
end

function worlds(mi::Core.MethodInstance)
    w = Tuple{UInt,UInt}[]
    if isdefined(mi, :cache)
        ci = mi.cache
        push!(w, (ci.min_world, ci.max_world))
        while isdefined(ci, :next)
            ci = ci.next
            push!(w, (ci.min_world, ci.max_world))
        end
    end
    return w
end

# avoid adding this to Base
function equal(ci1::Core.CodeInfo, ci2::Core.CodeInfo)
    return ci1.code == ci2.code &&
           ci1.codelocs == ci2.codelocs &&
           ci1.ssavaluetypes == ci2.ssavaluetypes &&
           ci1.ssaflags == ci2.ssaflags &&
           ci1.method_for_inference_limit_heuristics == ci2.method_for_inference_limit_heuristics &&
           ci1.linetable == ci2.linetable &&
           ci1.slotnames == ci2.slotnames &&
           ci1.slotflags == ci2.slotflags &&
           ci1.slottypes == ci2.slottypes &&
           ci1.rettype == ci2.rettype
end
equal(p1::Pair, p2::Pair) = p1.second == p2.second && equal(p1.first, p2.first)

## Union-splitting based on state-of-the-world: check that each invalidation corresponds to new code
applyf35855(c) = f35855(c[1])
f35855(::Int) = 1
f35855(::Float64) = 2
applyf35855([1])
applyf35855([1.0])
applyf35855(Any[1])
wint   = worlds(method_instance(applyf35855, (Vector{Int},)))
wfloat = worlds(method_instance(applyf35855, (Vector{Float64},)))
wany2  = worlds(method_instance(applyf35855, (Vector{Any},)))
src2 = code_typed(applyf35855, (Vector{Any},))[1]
f35855(::String) = 3
applyf35855(Any[1])
@test worlds(method_instance(applyf35855, (Vector{Int},))) == wint
@test worlds(method_instance(applyf35855, (Vector{Float64},))) == wfloat
wany3 = worlds(method_instance(applyf35855, (Vector{Any},)))
src3 = code_typed(applyf35855, (Vector{Any},))[1]
@test !(wany3 == wany2) || equal(src3, src2) # code doesn't change unless you invalidate
f35855(::AbstractVector) = 4
applyf35855(Any[1])
wany4 = worlds(method_instance(applyf35855, (Vector{Any},)))
src4 = code_typed(applyf35855, (Vector{Any},))[1]
@test !(wany4 == wany3) || equal(src4, src3) # code doesn't change unless you invalidate
f35855(::Dict) = 5
applyf35855(Any[1])
wany5 = worlds(method_instance(applyf35855, (Vector{Any},)))
src5 = code_typed(applyf35855, (Vector{Any},))[1]
@test (wany5 == wany4) == equal(src5, src4)
f35855(::Set) = 6    # with current settings, this shouldn't invalidate
applyf35855(Any[1])
wany6 = worlds(method_instance(applyf35855, (Vector{Any},)))
src6 = code_typed(applyf35855, (Vector{Any},))[1]
@test wany6 == wany5
@test equal(src6, src5)

applyf35855_2(c) = f35855_2(c[1])
f35855_2(::Int) = 1
f35855_2(::Float64) = 2
applyf35855_2(Any[1])
wany3 = worlds(method_instance(applyf35855_2, (Vector{Any},)))
src3 = code_typed(applyf35855_2, (Vector{Any},))[1]
f35855_2(::AbstractVector) = 4
applyf35855_2(Any[1])
wany4 = worlds(method_instance(applyf35855_2, (Vector{Any},)))
src4 = code_typed(applyf35855_2, (Vector{Any},))[1]
@test !(wany4 == wany3) || equal(src4, src3) # code doesn't change unless you invalidate

## ambiguities do not trigger invalidation
m = which(+, (Char, UInt8))
mi = Core.Compiler.specialize_method(m, Tuple{typeof(+), AbstractChar, UInt8}, Core.svec())
w = worlds(mi)

abstract type FixedPoint35855{T <: Integer} <: Real end
struct Normed35855 <: FixedPoint35855{UInt8}
    i::UInt8
    Normed35855(i::Integer, _) = new(i % UInt8)
end
(::Type{X})(x::Real) where {T, X<:FixedPoint35855{T}} = X(round(T, typemax(T)*x), 0)
@test worlds(mi) == w

mi = method_instance(convert, (Type{Nothing}, String))
w = worlds(mi)
abstract type Colorant35855 end
Base.convert(::Type{C}, c) where {C<:Colorant35855} = false
@test worlds(mi) == w

## NamedTuple and extensions of eltype
outer(anyc) = inner(anyc[])
inner(s::Union{Vector,Dict}; kw=false) = inneri(s, kwi=maximum(s), kwb=kw)
inneri(s, args...; kwargs...) = inneri(IOBuffer(), s, args...; kwargs...)
inneri(io::IO, s::Union{Vector,Dict}; kwi=0, kwb=false) = (print(io, first(s), " "^kwi, kwb); String(take!(io)))
@test outer(Ref{Any}([1,2,3])) == "1   false"
mi = method_instance(Core.kwcall, (NamedTuple{(:kwi,:kwb),TT} where TT<:Tuple{Any,Bool}, typeof(inneri), Vector{T} where T))
w = worlds(mi)
abstract type Container{T} end
Base.eltype(::Type{C}) where {T,C<:Container{T}} = T
@test worlds(mi) == w

## invoke call

_invoke46741(a::Int) = a > 0 ? :int : println(a)
_invoke46741(a::Integer) = a > 0 ? :integer : println(a)
invoke46741(a) = @invoke _invoke46741(a::Integer)
@test invoke46741(42) === :integer
invoke46741_world = worlds(method_instance(invoke46741, (Int,)))
_invoke46741(a::Int) = a > 0 ? :int2 : println(a)
@test invoke46741(42) === :integer
@test worlds(method_instance(invoke46741, (Int,))) == invoke46741_world
_invoke46741(a::UInt) = a > 0 ? :uint2 : println(a)
@test invoke46741(42) === :integer
@test worlds(method_instance(invoke46741, (Int,))) == invoke46741_world
_invoke46741(a::Integer) = a > 0 ? :integer2 : println(a)
@test invoke46741(42) === :integer2
@test worlds(method_instance(invoke46741, (Int,))) ≠ invoke46741_world

# const-prop'ed call
_invoke46741(a::Int) = a > 0 ? :int : println(a)
_invoke46741(a::Integer) = a > 0 ? :integer : println(a)
invoke46741() = @invoke _invoke46741(42::Integer)
@test invoke46741() === :integer
invoke46741_world = worlds(method_instance(invoke46741, ()))
_invoke46741(a::Int) = a > 0 ? :int2 : println(a)
@test invoke46741() === :integer
@test worlds(method_instance(invoke46741, ())) == invoke46741_world
_invoke46741(a::UInt) = a > 0 ? :uint2 : println(a)
@test invoke46741() === :integer
@test worlds(method_instance(invoke46741, ())) == invoke46741_world
_invoke46741(a::Integer) = a > 0 ? :integer2 : println(a)
@test invoke46741() === :integer2
@test worlds(method_instance(invoke46741, ())) ≠ invoke46741_world

# invoke_in_world
# ===============

f_inworld(x) = "world one; x=$x"
g_inworld(x; y) = "world one; x=$x, y=$y"
wc_aiw1 = get_world_counter()
# redefine f_inworld, g_inworld, and check that we can invoke both versions
f_inworld(x) = "world two; x=$x"
g_inworld(x; y) = "world two; x=$x, y=$y"
wc_aiw2 = get_world_counter()
@test Base.invoke_in_world(wc_aiw1, f_inworld, 2) == "world one; x=2"
@test Base.invoke_in_world(wc_aiw2, f_inworld, 2) == "world two; x=2"
@test Base.invoke_in_world(wc_aiw1, g_inworld, 2, y=3) == "world one; x=2, y=3"
@test Base.invoke_in_world(wc_aiw2, g_inworld, 2, y=3) == "world two; x=2, y=3"
back to top