https://github.com/torvalds/linux
Revision a3f94cb99a854fa381fe7fadd97c4f61633717a5 authored by Phillip Lougher on 02 August 2018, 15:45:15 UTC, committed by Linus Torvalds on 02 August 2018, 16:34:02 UTC
Previously in squashfs_readpage() when copying data into the page
cache, it used the length of the datablock read from the filesystem
(after decompression).  However, if the filesystem has been corrupted
this data block may be short, which will leave pages unfilled.

The fix for this is to compute the expected number of bytes to copy
from the inode size, and use this to detect if the block is short.

Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Tested-by: Willy Tarreau <w@1wt.eu>
Cc: Анатолий Тросиненко <anatoly.trosinenko@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 71755ee
Raw File
Tip revision: a3f94cb99a854fa381fe7fadd97c4f61633717a5 authored by Phillip Lougher on 02 August 2018, 15:45:15 UTC
Squashfs: Compute expected length from inode size rather than block length
Tip revision: a3f94cb
binfmt_misc.c
/*
 * binfmt_misc.c
 *
 * Copyright (C) 1997 Richard Günther
 *
 * binfmt_misc detects binaries via a magic or filename extension and invokes
 * a specified wrapper. See Documentation/admin-guide/binfmt-misc.rst for more details.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/magic.h>
#include <linux/binfmts.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string_helpers.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/syscalls.h>
#include <linux/fs.h>
#include <linux/uaccess.h>

#include "internal.h"

#ifdef DEBUG
# define USE_DEBUG 1
#else
# define USE_DEBUG 0
#endif

enum {
	VERBOSE_STATUS = 1 /* make it zero to save 400 bytes kernel memory */
};

static LIST_HEAD(entries);
static int enabled = 1;

enum {Enabled, Magic};
#define MISC_FMT_PRESERVE_ARGV0 (1 << 31)
#define MISC_FMT_OPEN_BINARY (1 << 30)
#define MISC_FMT_CREDENTIALS (1 << 29)
#define MISC_FMT_OPEN_FILE (1 << 28)

typedef struct {
	struct list_head list;
	unsigned long flags;		/* type, status, etc. */
	int offset;			/* offset of magic */
	int size;			/* size of magic/mask */
	char *magic;			/* magic or filename extension */
	char *mask;			/* mask, NULL for exact match */
	const char *interpreter;	/* filename of interpreter */
	char *name;
	struct dentry *dentry;
	struct file *interp_file;
} Node;

static DEFINE_RWLOCK(entries_lock);
static struct file_system_type bm_fs_type;
static struct vfsmount *bm_mnt;
static int entry_count;

/*
 * Max length of the register string.  Determined by:
 *  - 7 delimiters
 *  - name:   ~50 bytes
 *  - type:   1 byte
 *  - offset: 3 bytes (has to be smaller than BINPRM_BUF_SIZE)
 *  - magic:  128 bytes (512 in escaped form)
 *  - mask:   128 bytes (512 in escaped form)
 *  - interp: ~50 bytes
 *  - flags:  5 bytes
 * Round that up a bit, and then back off to hold the internal data
 * (like struct Node).
 */
#define MAX_REGISTER_LENGTH 1920

/*
 * Check if we support the binfmt
 * if we do, return the node, else NULL
 * locking is done in load_misc_binary
 */
static Node *check_file(struct linux_binprm *bprm)
{
	char *p = strrchr(bprm->interp, '.');
	struct list_head *l;

	/* Walk all the registered handlers. */
	list_for_each(l, &entries) {
		Node *e = list_entry(l, Node, list);
		char *s;
		int j;

		/* Make sure this one is currently enabled. */
		if (!test_bit(Enabled, &e->flags))
			continue;

		/* Do matching based on extension if applicable. */
		if (!test_bit(Magic, &e->flags)) {
			if (p && !strcmp(e->magic, p + 1))
				return e;
			continue;
		}

		/* Do matching based on magic & mask. */
		s = bprm->buf + e->offset;
		if (e->mask) {
			for (j = 0; j < e->size; j++)
				if ((*s++ ^ e->magic[j]) & e->mask[j])
					break;
		} else {
			for (j = 0; j < e->size; j++)
				if ((*s++ ^ e->magic[j]))
					break;
		}
		if (j == e->size)
			return e;
	}
	return NULL;
}

/*
 * the loader itself
 */
static int load_misc_binary(struct linux_binprm *bprm)
{
	Node *fmt;
	struct file *interp_file = NULL;
	int retval;
	int fd_binary = -1;

	retval = -ENOEXEC;
	if (!enabled)
		return retval;

	/* to keep locking time low, we copy the interpreter string */
	read_lock(&entries_lock);
	fmt = check_file(bprm);
	if (fmt)
		dget(fmt->dentry);
	read_unlock(&entries_lock);
	if (!fmt)
		return retval;

	/* Need to be able to load the file after exec */
	retval = -ENOENT;
	if (bprm->interp_flags & BINPRM_FLAGS_PATH_INACCESSIBLE)
		goto ret;

	if (!(fmt->flags & MISC_FMT_PRESERVE_ARGV0)) {
		retval = remove_arg_zero(bprm);
		if (retval)
			goto ret;
	}

	if (fmt->flags & MISC_FMT_OPEN_BINARY) {

		/* if the binary should be opened on behalf of the
		 * interpreter than keep it open and assign descriptor
		 * to it
		 */
		fd_binary = get_unused_fd_flags(0);
		if (fd_binary < 0) {
			retval = fd_binary;
			goto ret;
		}
		fd_install(fd_binary, bprm->file);

		/* if the binary is not readable than enforce mm->dumpable=0
		   regardless of the interpreter's permissions */
		would_dump(bprm, bprm->file);

		allow_write_access(bprm->file);
		bprm->file = NULL;

		/* mark the bprm that fd should be passed to interp */
		bprm->interp_flags |= BINPRM_FLAGS_EXECFD;
		bprm->interp_data = fd_binary;

	} else {
		allow_write_access(bprm->file);
		fput(bprm->file);
		bprm->file = NULL;
	}
	/* make argv[1] be the path to the binary */
	retval = copy_strings_kernel(1, &bprm->interp, bprm);
	if (retval < 0)
		goto error;
	bprm->argc++;

	/* add the interp as argv[0] */
	retval = copy_strings_kernel(1, &fmt->interpreter, bprm);
	if (retval < 0)
		goto error;
	bprm->argc++;

	/* Update interp in case binfmt_script needs it. */
	retval = bprm_change_interp(fmt->interpreter, bprm);
	if (retval < 0)
		goto error;

	if (fmt->flags & MISC_FMT_OPEN_FILE) {
		interp_file = filp_clone_open(fmt->interp_file);
		if (!IS_ERR(interp_file))
			deny_write_access(interp_file);
	} else {
		interp_file = open_exec(fmt->interpreter);
	}
	retval = PTR_ERR(interp_file);
	if (IS_ERR(interp_file))
		goto error;

	bprm->file = interp_file;
	if (fmt->flags & MISC_FMT_CREDENTIALS) {
		loff_t pos = 0;

		/*
		 * No need to call prepare_binprm(), it's already been
		 * done.  bprm->buf is stale, update from interp_file.
		 */
		memset(bprm->buf, 0, BINPRM_BUF_SIZE);
		retval = kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE,
				&pos);
	} else
		retval = prepare_binprm(bprm);

	if (retval < 0)
		goto error;

	retval = search_binary_handler(bprm);
	if (retval < 0)
		goto error;

ret:
	dput(fmt->dentry);
	return retval;
error:
	if (fd_binary > 0)
		ksys_close(fd_binary);
	bprm->interp_flags = 0;
	bprm->interp_data = 0;
	goto ret;
}

/* Command parsers */

/*
 * parses and copies one argument enclosed in del from *sp to *dp,
 * recognising the \x special.
 * returns pointer to the copied argument or NULL in case of an
 * error (and sets err) or null argument length.
 */
static char *scanarg(char *s, char del)
{
	char c;

	while ((c = *s++) != del) {
		if (c == '\\' && *s == 'x') {
			s++;
			if (!isxdigit(*s++))
				return NULL;
			if (!isxdigit(*s++))
				return NULL;
		}
	}
	s[-1] ='\0';
	return s;
}

static char *check_special_flags(char *sfs, Node *e)
{
	char *p = sfs;
	int cont = 1;

	/* special flags */
	while (cont) {
		switch (*p) {
		case 'P':
			pr_debug("register: flag: P (preserve argv0)\n");
			p++;
			e->flags |= MISC_FMT_PRESERVE_ARGV0;
			break;
		case 'O':
			pr_debug("register: flag: O (open binary)\n");
			p++;
			e->flags |= MISC_FMT_OPEN_BINARY;
			break;
		case 'C':
			pr_debug("register: flag: C (preserve creds)\n");
			p++;
			/* this flags also implies the
			   open-binary flag */
			e->flags |= (MISC_FMT_CREDENTIALS |
					MISC_FMT_OPEN_BINARY);
			break;
		case 'F':
			pr_debug("register: flag: F: open interpreter file now\n");
			p++;
			e->flags |= MISC_FMT_OPEN_FILE;
			break;
		default:
			cont = 0;
		}
	}

	return p;
}

/*
 * This registers a new binary format, it recognises the syntax
 * ':name:type:offset:magic:mask:interpreter:flags'
 * where the ':' is the IFS, that can be chosen with the first char
 */
static Node *create_entry(const char __user *buffer, size_t count)
{
	Node *e;
	int memsize, err;
	char *buf, *p;
	char del;

	pr_debug("register: received %zu bytes\n", count);

	/* some sanity checks */
	err = -EINVAL;
	if ((count < 11) || (count > MAX_REGISTER_LENGTH))
		goto out;

	err = -ENOMEM;
	memsize = sizeof(Node) + count + 8;
	e = kmalloc(memsize, GFP_KERNEL);
	if (!e)
		goto out;

	p = buf = (char *)e + sizeof(Node);

	memset(e, 0, sizeof(Node));
	if (copy_from_user(buf, buffer, count))
		goto efault;

	del = *p++;	/* delimeter */

	pr_debug("register: delim: %#x {%c}\n", del, del);

	/* Pad the buffer with the delim to simplify parsing below. */
	memset(buf + count, del, 8);

	/* Parse the 'name' field. */
	e->name = p;
	p = strchr(p, del);
	if (!p)
		goto einval;
	*p++ = '\0';
	if (!e->name[0] ||
	    !strcmp(e->name, ".") ||
	    !strcmp(e->name, "..") ||
	    strchr(e->name, '/'))
		goto einval;

	pr_debug("register: name: {%s}\n", e->name);

	/* Parse the 'type' field. */
	switch (*p++) {
	case 'E':
		pr_debug("register: type: E (extension)\n");
		e->flags = 1 << Enabled;
		break;
	case 'M':
		pr_debug("register: type: M (magic)\n");
		e->flags = (1 << Enabled) | (1 << Magic);
		break;
	default:
		goto einval;
	}
	if (*p++ != del)
		goto einval;

	if (test_bit(Magic, &e->flags)) {
		/* Handle the 'M' (magic) format. */
		char *s;

		/* Parse the 'offset' field. */
		s = strchr(p, del);
		if (!s)
			goto einval;
		*s = '\0';
		if (p != s) {
			int r = kstrtoint(p, 10, &e->offset);
			if (r != 0 || e->offset < 0)
				goto einval;
		}
		p = s;
		if (*p++)
			goto einval;
		pr_debug("register: offset: %#x\n", e->offset);

		/* Parse the 'magic' field. */
		e->magic = p;
		p = scanarg(p, del);
		if (!p)
			goto einval;
		if (!e->magic[0])
			goto einval;
		if (USE_DEBUG)
			print_hex_dump_bytes(
				KBUILD_MODNAME ": register: magic[raw]: ",
				DUMP_PREFIX_NONE, e->magic, p - e->magic);

		/* Parse the 'mask' field. */
		e->mask = p;
		p = scanarg(p, del);
		if (!p)
			goto einval;
		if (!e->mask[0]) {
			e->mask = NULL;
			pr_debug("register:  mask[raw]: none\n");
		} else if (USE_DEBUG)
			print_hex_dump_bytes(
				KBUILD_MODNAME ": register:  mask[raw]: ",
				DUMP_PREFIX_NONE, e->mask, p - e->mask);

		/*
		 * Decode the magic & mask fields.
		 * Note: while we might have accepted embedded NUL bytes from
		 * above, the unescape helpers here will stop at the first one
		 * it encounters.
		 */
		e->size = string_unescape_inplace(e->magic, UNESCAPE_HEX);
		if (e->mask &&
		    string_unescape_inplace(e->mask, UNESCAPE_HEX) != e->size)
			goto einval;
		if (e->size > BINPRM_BUF_SIZE ||
		    BINPRM_BUF_SIZE - e->size < e->offset)
			goto einval;
		pr_debug("register: magic/mask length: %i\n", e->size);
		if (USE_DEBUG) {
			print_hex_dump_bytes(
				KBUILD_MODNAME ": register: magic[decoded]: ",
				DUMP_PREFIX_NONE, e->magic, e->size);

			if (e->mask) {
				int i;
				char *masked = kmalloc(e->size, GFP_KERNEL);

				print_hex_dump_bytes(
					KBUILD_MODNAME ": register:  mask[decoded]: ",
					DUMP_PREFIX_NONE, e->mask, e->size);

				if (masked) {
					for (i = 0; i < e->size; ++i)
						masked[i] = e->magic[i] & e->mask[i];
					print_hex_dump_bytes(
						KBUILD_MODNAME ": register:  magic[masked]: ",
						DUMP_PREFIX_NONE, masked, e->size);

					kfree(masked);
				}
			}
		}
	} else {
		/* Handle the 'E' (extension) format. */

		/* Skip the 'offset' field. */
		p = strchr(p, del);
		if (!p)
			goto einval;
		*p++ = '\0';

		/* Parse the 'magic' field. */
		e->magic = p;
		p = strchr(p, del);
		if (!p)
			goto einval;
		*p++ = '\0';
		if (!e->magic[0] || strchr(e->magic, '/'))
			goto einval;
		pr_debug("register: extension: {%s}\n", e->magic);

		/* Skip the 'mask' field. */
		p = strchr(p, del);
		if (!p)
			goto einval;
		*p++ = '\0';
	}

	/* Parse the 'interpreter' field. */
	e->interpreter = p;
	p = strchr(p, del);
	if (!p)
		goto einval;
	*p++ = '\0';
	if (!e->interpreter[0])
		goto einval;
	pr_debug("register: interpreter: {%s}\n", e->interpreter);

	/* Parse the 'flags' field. */
	p = check_special_flags(p, e);
	if (*p == '\n')
		p++;
	if (p != buf + count)
		goto einval;

	return e;

out:
	return ERR_PTR(err);

efault:
	kfree(e);
	return ERR_PTR(-EFAULT);
einval:
	kfree(e);
	return ERR_PTR(-EINVAL);
}

/*
 * Set status of entry/binfmt_misc:
 * '1' enables, '0' disables and '-1' clears entry/binfmt_misc
 */
static int parse_command(const char __user *buffer, size_t count)
{
	char s[4];

	if (count > 3)
		return -EINVAL;
	if (copy_from_user(s, buffer, count))
		return -EFAULT;
	if (!count)
		return 0;
	if (s[count - 1] == '\n')
		count--;
	if (count == 1 && s[0] == '0')
		return 1;
	if (count == 1 && s[0] == '1')
		return 2;
	if (count == 2 && s[0] == '-' && s[1] == '1')
		return 3;
	return -EINVAL;
}

/* generic stuff */

static void entry_status(Node *e, char *page)
{
	char *dp = page;
	const char *status = "disabled";

	if (test_bit(Enabled, &e->flags))
		status = "enabled";

	if (!VERBOSE_STATUS) {
		sprintf(page, "%s\n", status);
		return;
	}

	dp += sprintf(dp, "%s\ninterpreter %s\n", status, e->interpreter);

	/* print the special flags */
	dp += sprintf(dp, "flags: ");
	if (e->flags & MISC_FMT_PRESERVE_ARGV0)
		*dp++ = 'P';
	if (e->flags & MISC_FMT_OPEN_BINARY)
		*dp++ = 'O';
	if (e->flags & MISC_FMT_CREDENTIALS)
		*dp++ = 'C';
	if (e->flags & MISC_FMT_OPEN_FILE)
		*dp++ = 'F';
	*dp++ = '\n';

	if (!test_bit(Magic, &e->flags)) {
		sprintf(dp, "extension .%s\n", e->magic);
	} else {
		dp += sprintf(dp, "offset %i\nmagic ", e->offset);
		dp = bin2hex(dp, e->magic, e->size);
		if (e->mask) {
			dp += sprintf(dp, "\nmask ");
			dp = bin2hex(dp, e->mask, e->size);
		}
		*dp++ = '\n';
		*dp = '\0';
	}
}

static struct inode *bm_get_inode(struct super_block *sb, int mode)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_ino = get_next_ino();
		inode->i_mode = mode;
		inode->i_atime = inode->i_mtime = inode->i_ctime =
			current_time(inode);
	}
	return inode;
}

static void bm_evict_inode(struct inode *inode)
{
	Node *e = inode->i_private;

	if (e && e->flags & MISC_FMT_OPEN_FILE)
		filp_close(e->interp_file, NULL);

	clear_inode(inode);
	kfree(e);
}

static void kill_node(Node *e)
{
	struct dentry *dentry;

	write_lock(&entries_lock);
	list_del_init(&e->list);
	write_unlock(&entries_lock);

	dentry = e->dentry;
	drop_nlink(d_inode(dentry));
	d_drop(dentry);
	dput(dentry);
	simple_release_fs(&bm_mnt, &entry_count);
}

/* /<entry> */

static ssize_t
bm_entry_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	Node *e = file_inode(file)->i_private;
	ssize_t res;
	char *page;

	page = (char *) __get_free_page(GFP_KERNEL);
	if (!page)
		return -ENOMEM;

	entry_status(e, page);

	res = simple_read_from_buffer(buf, nbytes, ppos, page, strlen(page));

	free_page((unsigned long) page);
	return res;
}

static ssize_t bm_entry_write(struct file *file, const char __user *buffer,
				size_t count, loff_t *ppos)
{
	struct dentry *root;
	Node *e = file_inode(file)->i_private;
	int res = parse_command(buffer, count);

	switch (res) {
	case 1:
		/* Disable this handler. */
		clear_bit(Enabled, &e->flags);
		break;
	case 2:
		/* Enable this handler. */
		set_bit(Enabled, &e->flags);
		break;
	case 3:
		/* Delete this handler. */
		root = file_inode(file)->i_sb->s_root;
		inode_lock(d_inode(root));

		if (!list_empty(&e->list))
			kill_node(e);

		inode_unlock(d_inode(root));
		break;
	default:
		return res;
	}

	return count;
}

static const struct file_operations bm_entry_operations = {
	.read		= bm_entry_read,
	.write		= bm_entry_write,
	.llseek		= default_llseek,
};

/* /register */

static ssize_t bm_register_write(struct file *file, const char __user *buffer,
			       size_t count, loff_t *ppos)
{
	Node *e;
	struct inode *inode;
	struct super_block *sb = file_inode(file)->i_sb;
	struct dentry *root = sb->s_root, *dentry;
	int err = 0;

	e = create_entry(buffer, count);

	if (IS_ERR(e))
		return PTR_ERR(e);

	inode_lock(d_inode(root));
	dentry = lookup_one_len(e->name, root, strlen(e->name));
	err = PTR_ERR(dentry);
	if (IS_ERR(dentry))
		goto out;

	err = -EEXIST;
	if (d_really_is_positive(dentry))
		goto out2;

	inode = bm_get_inode(sb, S_IFREG | 0644);

	err = -ENOMEM;
	if (!inode)
		goto out2;

	err = simple_pin_fs(&bm_fs_type, &bm_mnt, &entry_count);
	if (err) {
		iput(inode);
		inode = NULL;
		goto out2;
	}

	if (e->flags & MISC_FMT_OPEN_FILE) {
		struct file *f;

		f = open_exec(e->interpreter);
		if (IS_ERR(f)) {
			err = PTR_ERR(f);
			pr_notice("register: failed to install interpreter file %s\n", e->interpreter);
			simple_release_fs(&bm_mnt, &entry_count);
			iput(inode);
			inode = NULL;
			goto out2;
		}
		e->interp_file = f;
	}

	e->dentry = dget(dentry);
	inode->i_private = e;
	inode->i_fop = &bm_entry_operations;

	d_instantiate(dentry, inode);
	write_lock(&entries_lock);
	list_add(&e->list, &entries);
	write_unlock(&entries_lock);

	err = 0;
out2:
	dput(dentry);
out:
	inode_unlock(d_inode(root));

	if (err) {
		kfree(e);
		return err;
	}
	return count;
}

static const struct file_operations bm_register_operations = {
	.write		= bm_register_write,
	.llseek		= noop_llseek,
};

/* /status */

static ssize_t
bm_status_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	char *s = enabled ? "enabled\n" : "disabled\n";

	return simple_read_from_buffer(buf, nbytes, ppos, s, strlen(s));
}

static ssize_t bm_status_write(struct file *file, const char __user *buffer,
		size_t count, loff_t *ppos)
{
	int res = parse_command(buffer, count);
	struct dentry *root;

	switch (res) {
	case 1:
		/* Disable all handlers. */
		enabled = 0;
		break;
	case 2:
		/* Enable all handlers. */
		enabled = 1;
		break;
	case 3:
		/* Delete all handlers. */
		root = file_inode(file)->i_sb->s_root;
		inode_lock(d_inode(root));

		while (!list_empty(&entries))
			kill_node(list_first_entry(&entries, Node, list));

		inode_unlock(d_inode(root));
		break;
	default:
		return res;
	}

	return count;
}

static const struct file_operations bm_status_operations = {
	.read		= bm_status_read,
	.write		= bm_status_write,
	.llseek		= default_llseek,
};

/* Superblock handling */

static const struct super_operations s_ops = {
	.statfs		= simple_statfs,
	.evict_inode	= bm_evict_inode,
};

static int bm_fill_super(struct super_block *sb, void *data, int silent)
{
	int err;
	static const struct tree_descr bm_files[] = {
		[2] = {"status", &bm_status_operations, S_IWUSR|S_IRUGO},
		[3] = {"register", &bm_register_operations, S_IWUSR},
		/* last one */ {""}
	};

	err = simple_fill_super(sb, BINFMTFS_MAGIC, bm_files);
	if (!err)
		sb->s_op = &s_ops;
	return err;
}

static struct dentry *bm_mount(struct file_system_type *fs_type,
	int flags, const char *dev_name, void *data)
{
	return mount_single(fs_type, flags, data, bm_fill_super);
}

static struct linux_binfmt misc_format = {
	.module = THIS_MODULE,
	.load_binary = load_misc_binary,
};

static struct file_system_type bm_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "binfmt_misc",
	.mount		= bm_mount,
	.kill_sb	= kill_litter_super,
};
MODULE_ALIAS_FS("binfmt_misc");

static int __init init_misc_binfmt(void)
{
	int err = register_filesystem(&bm_fs_type);
	if (!err)
		insert_binfmt(&misc_format);
	return err;
}

static void __exit exit_misc_binfmt(void)
{
	unregister_binfmt(&misc_format);
	unregister_filesystem(&bm_fs_type);
}

core_initcall(init_misc_binfmt);
module_exit(exit_misc_binfmt);
MODULE_LICENSE("GPL");
back to top