https://github.com/torvalds/linux
Revision a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC, committed by Linus Torvalds on 01 December 2022, 21:14:21 UTC
The config to be able to inject error codes into any function annotated
with ALLOW_ERROR_INJECTION() is enabled when FUNCTION_ERROR_INJECTION is
enabled.  But unfortunately, this is always enabled on x86 when KPROBES
is enabled, and there's no way to turn it off.

As kprobes is useful for observability of the kernel, it is useful to
have it enabled in production environments.  But error injection should
be avoided.  Add a prompt to the config to allow it to be disabled even
when kprobes is enabled, and get rid of the "def_bool y".

This is a kernel debug feature (it's in Kconfig.debug), and should have
never been something enabled by default.

Cc: stable@vger.kernel.org
Fixes: 540adea3809f6 ("error-injection: Separate error-injection from kprobe")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 355479c
Raw File
Tip revision: a4412fdd49dc011bcc2c0d81ac4cab7457092650 authored by Steven Rostedt (Google) on 21 November 2022, 15:44:03 UTC
error-injection: Add prompt for function error injection
Tip revision: a4412fd
panel.c
// SPDX-License-Identifier: GPL-2.0+
/*
 * Front panel driver for Linux
 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
 * Copyright (C) 2016-2017 Glider bvba
 *
 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
 * connected to a parallel printer port.
 *
 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
 * serial module compatible with Samsung's KS0074. The pins may be connected in
 * any combination, everything is programmable.
 *
 * The keypad consists in a matrix of push buttons connecting input pins to
 * data output pins or to the ground. The combinations have to be hard-coded
 * in the driver, though several profiles exist and adding new ones is easy.
 *
 * Several profiles are provided for commonly found LCD+keypad modules on the
 * market, such as those found in Nexcom's appliances.
 *
 * FIXME:
 *      - the initialization/deinitialization process is very dirty and should
 *        be rewritten. It may even be buggy.
 *
 * TODO:
 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
 *      - make the LCD a part of a virtual screen of Vx*Vy
 *	- make the inputs list smp-safe
 *      - change the keyboard to a double mapping : signals -> key_id -> values
 *        so that applications can change values without knowing signals
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>

#include <linux/types.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/ctype.h>
#include <linux/parport.h>
#include <linux/list.h>

#include <linux/io.h>
#include <linux/uaccess.h>

#include "charlcd.h"
#include "hd44780_common.h"

#define LCD_MAXBYTES		256	/* max burst write */

#define KEYPAD_BUFFER		64

/* poll the keyboard this every second */
#define INPUT_POLL_TIME		(HZ / 50)
/* a key starts to repeat after this times INPUT_POLL_TIME */
#define KEYPAD_REP_START	(10)
/* a key repeats this times INPUT_POLL_TIME */
#define KEYPAD_REP_DELAY	(2)

/* converts an r_str() input to an active high, bits string : 000BAOSE */
#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)

#define PNL_PBUSY		0x80	/* inverted input, active low */
#define PNL_PACK		0x40	/* direct input, active low */
#define PNL_POUTPA		0x20	/* direct input, active high */
#define PNL_PSELECD		0x10	/* direct input, active high */
#define PNL_PERRORP		0x08	/* direct input, active low */

#define PNL_PBIDIR		0x20	/* bi-directional ports */
/* high to read data in or-ed with data out */
#define PNL_PINTEN		0x10
#define PNL_PSELECP		0x08	/* inverted output, active low */
#define PNL_PINITP		0x04	/* direct output, active low */
#define PNL_PAUTOLF		0x02	/* inverted output, active low */
#define PNL_PSTROBE		0x01	/* inverted output */

#define PNL_PD0			0x01
#define PNL_PD1			0x02
#define PNL_PD2			0x04
#define PNL_PD3			0x08
#define PNL_PD4			0x10
#define PNL_PD5			0x20
#define PNL_PD6			0x40
#define PNL_PD7			0x80

#define PIN_NONE		0
#define PIN_STROBE		1
#define PIN_D0			2
#define PIN_D1			3
#define PIN_D2			4
#define PIN_D3			5
#define PIN_D4			6
#define PIN_D5			7
#define PIN_D6			8
#define PIN_D7			9
#define PIN_AUTOLF		14
#define PIN_INITP		16
#define PIN_SELECP		17
#define PIN_NOT_SET		127

#define NOT_SET			-1

/* macros to simplify use of the parallel port */
#define r_ctr(x)        (parport_read_control((x)->port))
#define r_dtr(x)        (parport_read_data((x)->port))
#define r_str(x)        (parport_read_status((x)->port))
#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))

/* this defines which bits are to be used and which ones to be ignored */
/* logical or of the output bits involved in the scan matrix */
static __u8 scan_mask_o;
/* logical or of the input bits involved in the scan matrix */
static __u8 scan_mask_i;

enum input_type {
	INPUT_TYPE_STD,
	INPUT_TYPE_KBD,
};

enum input_state {
	INPUT_ST_LOW,
	INPUT_ST_RISING,
	INPUT_ST_HIGH,
	INPUT_ST_FALLING,
};

struct logical_input {
	struct list_head list;
	__u64 mask;
	__u64 value;
	enum input_type type;
	enum input_state state;
	__u8 rise_time, fall_time;
	__u8 rise_timer, fall_timer, high_timer;

	union {
		struct {	/* valid when type == INPUT_TYPE_STD */
			void (*press_fct)(int);
			void (*release_fct)(int);
			int press_data;
			int release_data;
		} std;
		struct {	/* valid when type == INPUT_TYPE_KBD */
			char press_str[sizeof(void *) + sizeof(int)] __nonstring;
			char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
			char release_str[sizeof(void *) + sizeof(int)] __nonstring;
		} kbd;
	} u;
};

static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */

/* physical contacts history
 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 * corresponds to the ground.
 * Within each group, bits are stored in the same order as read on the port :
 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 * So, each __u64 is represented like this :
 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 */

/* what has just been read from the I/O ports */
static __u64 phys_read;
/* previous phys_read */
static __u64 phys_read_prev;
/* stabilized phys_read (phys_read|phys_read_prev) */
static __u64 phys_curr;
/* previous phys_curr */
static __u64 phys_prev;
/* 0 means that at least one logical signal needs be computed */
static char inputs_stable;

/* these variables are specific to the keypad */
static struct {
	bool enabled;
} keypad;

static char keypad_buffer[KEYPAD_BUFFER];
static int keypad_buflen;
static int keypad_start;
static char keypressed;
static wait_queue_head_t keypad_read_wait;

/* lcd-specific variables */
static struct {
	bool enabled;
	bool initialized;

	int charset;
	int proto;

	/* TODO: use union here? */
	struct {
		int e;
		int rs;
		int rw;
		int cl;
		int da;
		int bl;
	} pins;

	struct charlcd *charlcd;
} lcd;

/* Needed only for init */
static int selected_lcd_type = NOT_SET;

/*
 * Bit masks to convert LCD signals to parallel port outputs.
 * _d_ are values for data port, _c_ are for control port.
 * [0] = signal OFF, [1] = signal ON, [2] = mask
 */
#define BIT_CLR		0
#define BIT_SET		1
#define BIT_MSK		2
#define BIT_STATES	3
/*
 * one entry for each bit on the LCD
 */
#define LCD_BIT_E	0
#define LCD_BIT_RS	1
#define LCD_BIT_RW	2
#define LCD_BIT_BL	3
#define LCD_BIT_CL	4
#define LCD_BIT_DA	5
#define LCD_BITS	6

/*
 * each bit can be either connected to a DATA or CTRL port
 */
#define LCD_PORT_C	0
#define LCD_PORT_D	1
#define LCD_PORTS	2

static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];

/*
 * LCD protocols
 */
#define LCD_PROTO_PARALLEL      0
#define LCD_PROTO_SERIAL        1
#define LCD_PROTO_TI_DA8XX_LCD	2

/*
 * LCD character sets
 */
#define LCD_CHARSET_NORMAL      0
#define LCD_CHARSET_KS0074      1

/*
 * LCD types
 */
#define LCD_TYPE_NONE		0
#define LCD_TYPE_CUSTOM		1
#define LCD_TYPE_OLD		2
#define LCD_TYPE_KS0074		3
#define LCD_TYPE_HANTRONIX	4
#define LCD_TYPE_NEXCOM		5

/*
 * keypad types
 */
#define KEYPAD_TYPE_NONE	0
#define KEYPAD_TYPE_OLD		1
#define KEYPAD_TYPE_NEW		2
#define KEYPAD_TYPE_NEXCOM	3

/*
 * panel profiles
 */
#define PANEL_PROFILE_CUSTOM	0
#define PANEL_PROFILE_OLD	1
#define PANEL_PROFILE_NEW	2
#define PANEL_PROFILE_HANTRONIX	3
#define PANEL_PROFILE_NEXCOM	4
#define PANEL_PROFILE_LARGE	5

/*
 * Construct custom config from the kernel's configuration
 */
#define DEFAULT_PARPORT         0
#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
#define DEFAULT_LCD_HEIGHT      2
#define DEFAULT_LCD_WIDTH       40
#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL

#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
#define DEFAULT_LCD_PIN_RS      PIN_SELECP
#define DEFAULT_LCD_PIN_RW      PIN_INITP
#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
#define DEFAULT_LCD_PIN_SDA     PIN_D0
#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET

#ifdef CONFIG_PANEL_PARPORT
#undef DEFAULT_PARPORT
#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
#endif

#ifdef CONFIG_PANEL_PROFILE
#undef DEFAULT_PROFILE
#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
#endif

#if DEFAULT_PROFILE == 0	/* custom */
#ifdef CONFIG_PANEL_KEYPAD
#undef DEFAULT_KEYPAD_TYPE
#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
#endif

#ifdef CONFIG_PANEL_LCD
#undef DEFAULT_LCD_TYPE
#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
#endif

#ifdef CONFIG_PANEL_LCD_HEIGHT
#undef DEFAULT_LCD_HEIGHT
#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
#endif

#ifdef CONFIG_PANEL_LCD_WIDTH
#undef DEFAULT_LCD_WIDTH
#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
#endif

#ifdef CONFIG_PANEL_LCD_BWIDTH
#undef DEFAULT_LCD_BWIDTH
#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
#endif

#ifdef CONFIG_PANEL_LCD_HWIDTH
#undef DEFAULT_LCD_HWIDTH
#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
#endif

#ifdef CONFIG_PANEL_LCD_CHARSET
#undef DEFAULT_LCD_CHARSET
#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
#endif

#ifdef CONFIG_PANEL_LCD_PROTO
#undef DEFAULT_LCD_PROTO
#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
#endif

#ifdef CONFIG_PANEL_LCD_PIN_E
#undef DEFAULT_LCD_PIN_E
#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
#endif

#ifdef CONFIG_PANEL_LCD_PIN_RS
#undef DEFAULT_LCD_PIN_RS
#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
#endif

#ifdef CONFIG_PANEL_LCD_PIN_RW
#undef DEFAULT_LCD_PIN_RW
#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
#endif

#ifdef CONFIG_PANEL_LCD_PIN_SCL
#undef DEFAULT_LCD_PIN_SCL
#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
#endif

#ifdef CONFIG_PANEL_LCD_PIN_SDA
#undef DEFAULT_LCD_PIN_SDA
#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
#endif

#ifdef CONFIG_PANEL_LCD_PIN_BL
#undef DEFAULT_LCD_PIN_BL
#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
#endif

#endif /* DEFAULT_PROFILE == 0 */

/* global variables */

/* Device single-open policy control */
static atomic_t keypad_available = ATOMIC_INIT(1);

static struct pardevice *pprt;

static int keypad_initialized;

static DEFINE_SPINLOCK(pprt_lock);
static struct timer_list scan_timer;

MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");

static int parport = DEFAULT_PARPORT;
module_param(parport, int, 0000);
MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");

static int profile = DEFAULT_PROFILE;
module_param(profile, int, 0000);
MODULE_PARM_DESC(profile,
		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
		 "4=16x2 nexcom; default=40x2, old kp");

static int keypad_type = NOT_SET;
module_param(keypad_type, int, 0000);
MODULE_PARM_DESC(keypad_type,
		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");

static int lcd_type = NOT_SET;
module_param(lcd_type, int, 0000);
MODULE_PARM_DESC(lcd_type,
		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");

static int lcd_height = NOT_SET;
module_param(lcd_height, int, 0000);
MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");

static int lcd_width = NOT_SET;
module_param(lcd_width, int, 0000);
MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");

static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
module_param(lcd_bwidth, int, 0000);
MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");

static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
module_param(lcd_hwidth, int, 0000);
MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");

static int lcd_charset = NOT_SET;
module_param(lcd_charset, int, 0000);
MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");

static int lcd_proto = NOT_SET;
module_param(lcd_proto, int, 0000);
MODULE_PARM_DESC(lcd_proto,
		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");

/*
 * These are the parallel port pins the LCD control signals are connected to.
 * Set this to 0 if the signal is not used. Set it to its opposite value
 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 * pin has not been explicitly specified.
 *
 * WARNING! no check will be performed about collisions with keypad !
 */

static int lcd_e_pin  = PIN_NOT_SET;
module_param(lcd_e_pin, int, 0000);
MODULE_PARM_DESC(lcd_e_pin,
		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");

static int lcd_rs_pin = PIN_NOT_SET;
module_param(lcd_rs_pin, int, 0000);
MODULE_PARM_DESC(lcd_rs_pin,
		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");

static int lcd_rw_pin = PIN_NOT_SET;
module_param(lcd_rw_pin, int, 0000);
MODULE_PARM_DESC(lcd_rw_pin,
		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");

static int lcd_cl_pin = PIN_NOT_SET;
module_param(lcd_cl_pin, int, 0000);
MODULE_PARM_DESC(lcd_cl_pin,
		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");

static int lcd_da_pin = PIN_NOT_SET;
module_param(lcd_da_pin, int, 0000);
MODULE_PARM_DESC(lcd_da_pin,
		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");

static int lcd_bl_pin = PIN_NOT_SET;
module_param(lcd_bl_pin, int, 0000);
MODULE_PARM_DESC(lcd_bl_pin,
		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");

/* Deprecated module parameters - consider not using them anymore */

static int lcd_enabled = NOT_SET;
module_param(lcd_enabled, int, 0000);
MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");

static int keypad_enabled = NOT_SET;
module_param(keypad_enabled, int, 0000);
MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");

/* for some LCD drivers (ks0074) we need a charset conversion table. */
static const unsigned char lcd_char_conv_ks0074[256] = {
	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
};

static const char old_keypad_profile[][4][9] = {
	{"S0", "Left\n", "Left\n", ""},
	{"S1", "Down\n", "Down\n", ""},
	{"S2", "Up\n", "Up\n", ""},
	{"S3", "Right\n", "Right\n", ""},
	{"S4", "Esc\n", "Esc\n", ""},
	{"S5", "Ret\n", "Ret\n", ""},
	{"", "", "", ""}
};

/* signals, press, repeat, release */
static const char new_keypad_profile[][4][9] = {
	{"S0", "Left\n", "Left\n", ""},
	{"S1", "Down\n", "Down\n", ""},
	{"S2", "Up\n", "Up\n", ""},
	{"S3", "Right\n", "Right\n", ""},
	{"S4s5", "", "Esc\n", "Esc\n"},
	{"s4S5", "", "Ret\n", "Ret\n"},
	{"S4S5", "Help\n", "", ""},
	/* add new signals above this line */
	{"", "", "", ""}
};

/* signals, press, repeat, release */
static const char nexcom_keypad_profile[][4][9] = {
	{"a-p-e-", "Down\n", "Down\n", ""},
	{"a-p-E-", "Ret\n", "Ret\n", ""},
	{"a-P-E-", "Esc\n", "Esc\n", ""},
	{"a-P-e-", "Up\n", "Up\n", ""},
	/* add new signals above this line */
	{"", "", "", ""}
};

static const char (*keypad_profile)[4][9] = old_keypad_profile;

static DECLARE_BITMAP(bits, LCD_BITS);

static void lcd_get_bits(unsigned int port, int *val)
{
	unsigned int bit, state;

	for (bit = 0; bit < LCD_BITS; bit++) {
		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
		*val &= lcd_bits[port][bit][BIT_MSK];
		*val |= lcd_bits[port][bit][state];
	}
}

/* sets data port bits according to current signals values */
static int set_data_bits(void)
{
	int val;

	val = r_dtr(pprt);
	lcd_get_bits(LCD_PORT_D, &val);
	w_dtr(pprt, val);
	return val;
}

/* sets ctrl port bits according to current signals values */
static int set_ctrl_bits(void)
{
	int val;

	val = r_ctr(pprt);
	lcd_get_bits(LCD_PORT_C, &val);
	w_ctr(pprt, val);
	return val;
}

/* sets ctrl & data port bits according to current signals values */
static void panel_set_bits(void)
{
	set_data_bits();
	set_ctrl_bits();
}

/*
 * Converts a parallel port pin (from -25 to 25) to data and control ports
 * masks, and data and control port bits. The signal will be considered
 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 *
 * Result will be used this way :
 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 */
static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
{
	int d_bit, c_bit, inv;

	d_val[0] = 0;
	c_val[0] = 0;
	d_val[1] = 0;
	c_val[1] = 0;
	d_val[2] = 0xFF;
	c_val[2] = 0xFF;

	if (pin == 0)
		return;

	inv = (pin < 0);
	if (inv)
		pin = -pin;

	d_bit = 0;
	c_bit = 0;

	switch (pin) {
	case PIN_STROBE:	/* strobe, inverted */
		c_bit = PNL_PSTROBE;
		inv = !inv;
		break;
	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
		d_bit = 1 << (pin - 2);
		break;
	case PIN_AUTOLF:	/* autofeed, inverted */
		c_bit = PNL_PAUTOLF;
		inv = !inv;
		break;
	case PIN_INITP:		/* init, direct */
		c_bit = PNL_PINITP;
		break;
	case PIN_SELECP:	/* select_in, inverted */
		c_bit = PNL_PSELECP;
		inv = !inv;
		break;
	default:		/* unknown pin, ignore */
		break;
	}

	if (c_bit) {
		c_val[2] &= ~c_bit;
		c_val[!inv] = c_bit;
	} else if (d_bit) {
		d_val[2] &= ~d_bit;
		d_val[!inv] = d_bit;
	}
}

/*
 * send a serial byte to the LCD panel. The caller is responsible for locking
 * if needed.
 */
static void lcd_send_serial(int byte)
{
	int bit;

	/*
	 * the data bit is set on D0, and the clock on STROBE.
	 * LCD reads D0 on STROBE's rising edge.
	 */
	for (bit = 0; bit < 8; bit++) {
		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
		panel_set_bits();
		if (byte & 1) {
			set_bit(LCD_BIT_DA, bits);
		} else {
			clear_bit(LCD_BIT_DA, bits);
		}

		panel_set_bits();
		udelay(2);  /* maintain the data during 2 us before CLK up */
		set_bit(LCD_BIT_CL, bits);	/* CLK high */
		panel_set_bits();
		udelay(1);  /* maintain the strobe during 1 us */
		byte >>= 1;
	}
}

/* turn the backlight on or off */
static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on)
{
	if (lcd.pins.bl == PIN_NONE)
		return;

	/* The backlight is activated by setting the AUTOFEED line to +5V  */
	spin_lock_irq(&pprt_lock);
	if (on)
		set_bit(LCD_BIT_BL, bits);
	else
		clear_bit(LCD_BIT_BL, bits);
	panel_set_bits();
	spin_unlock_irq(&pprt_lock);
}

/* send a command to the LCD panel in serial mode */
static void lcd_write_cmd_s(struct hd44780_common *hdc, int cmd)
{
	spin_lock_irq(&pprt_lock);
	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
	lcd_send_serial(cmd & 0x0F);
	lcd_send_serial((cmd >> 4) & 0x0F);
	udelay(40);		/* the shortest command takes at least 40 us */
	spin_unlock_irq(&pprt_lock);
}

/* send data to the LCD panel in serial mode */
static void lcd_write_data_s(struct hd44780_common *hdc, int data)
{
	spin_lock_irq(&pprt_lock);
	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
	lcd_send_serial(data & 0x0F);
	lcd_send_serial((data >> 4) & 0x0F);
	udelay(40);		/* the shortest data takes at least 40 us */
	spin_unlock_irq(&pprt_lock);
}

/* send a command to the LCD panel in 8 bits parallel mode */
static void lcd_write_cmd_p8(struct hd44780_common *hdc, int cmd)
{
	spin_lock_irq(&pprt_lock);
	/* present the data to the data port */
	w_dtr(pprt, cmd);
	udelay(20);	/* maintain the data during 20 us before the strobe */

	set_bit(LCD_BIT_E, bits);
	clear_bit(LCD_BIT_RS, bits);
	clear_bit(LCD_BIT_RW, bits);
	set_ctrl_bits();

	udelay(40);	/* maintain the strobe during 40 us */

	clear_bit(LCD_BIT_E, bits);
	set_ctrl_bits();

	udelay(120);	/* the shortest command takes at least 120 us */
	spin_unlock_irq(&pprt_lock);
}

/* send data to the LCD panel in 8 bits parallel mode */
static void lcd_write_data_p8(struct hd44780_common *hdc, int data)
{
	spin_lock_irq(&pprt_lock);
	/* present the data to the data port */
	w_dtr(pprt, data);
	udelay(20);	/* maintain the data during 20 us before the strobe */

	set_bit(LCD_BIT_E, bits);
	set_bit(LCD_BIT_RS, bits);
	clear_bit(LCD_BIT_RW, bits);
	set_ctrl_bits();

	udelay(40);	/* maintain the strobe during 40 us */

	clear_bit(LCD_BIT_E, bits);
	set_ctrl_bits();

	udelay(45);	/* the shortest data takes at least 45 us */
	spin_unlock_irq(&pprt_lock);
}

/* send a command to the TI LCD panel */
static void lcd_write_cmd_tilcd(struct hd44780_common *hdc, int cmd)
{
	spin_lock_irq(&pprt_lock);
	/* present the data to the control port */
	w_ctr(pprt, cmd);
	udelay(60);
	spin_unlock_irq(&pprt_lock);
}

/* send data to the TI LCD panel */
static void lcd_write_data_tilcd(struct hd44780_common *hdc, int data)
{
	spin_lock_irq(&pprt_lock);
	/* present the data to the data port */
	w_dtr(pprt, data);
	udelay(60);
	spin_unlock_irq(&pprt_lock);
}

static const struct charlcd_ops charlcd_ops = {
	.backlight	= lcd_backlight,
	.print		= hd44780_common_print,
	.gotoxy		= hd44780_common_gotoxy,
	.home		= hd44780_common_home,
	.clear_display	= hd44780_common_clear_display,
	.init_display	= hd44780_common_init_display,
	.shift_cursor	= hd44780_common_shift_cursor,
	.shift_display	= hd44780_common_shift_display,
	.display	= hd44780_common_display,
	.cursor		= hd44780_common_cursor,
	.blink		= hd44780_common_blink,
	.fontsize	= hd44780_common_fontsize,
	.lines		= hd44780_common_lines,
	.redefine_char	= hd44780_common_redefine_char,
};

/* initialize the LCD driver */
static void lcd_init(void)
{
	struct charlcd *charlcd;
	struct hd44780_common *hdc;

	hdc = hd44780_common_alloc();
	if (!hdc)
		return;

	charlcd = charlcd_alloc();
	if (!charlcd) {
		kfree(hdc);
		return;
	}

	hdc->hd44780 = &lcd;
	charlcd->drvdata = hdc;

	/*
	 * Init lcd struct with load-time values to preserve exact
	 * current functionality (at least for now).
	 */
	charlcd->height = lcd_height;
	charlcd->width = lcd_width;
	hdc->bwidth = lcd_bwidth;
	hdc->hwidth = lcd_hwidth;

	switch (selected_lcd_type) {
	case LCD_TYPE_OLD:
		/* parallel mode, 8 bits */
		lcd.proto = LCD_PROTO_PARALLEL;
		lcd.charset = LCD_CHARSET_NORMAL;
		lcd.pins.e = PIN_STROBE;
		lcd.pins.rs = PIN_AUTOLF;

		charlcd->width = 40;
		hdc->bwidth = 40;
		hdc->hwidth = 64;
		charlcd->height = 2;
		break;
	case LCD_TYPE_KS0074:
		/* serial mode, ks0074 */
		lcd.proto = LCD_PROTO_SERIAL;
		lcd.charset = LCD_CHARSET_KS0074;
		lcd.pins.bl = PIN_AUTOLF;
		lcd.pins.cl = PIN_STROBE;
		lcd.pins.da = PIN_D0;

		charlcd->width = 16;
		hdc->bwidth = 40;
		hdc->hwidth = 16;
		charlcd->height = 2;
		break;
	case LCD_TYPE_NEXCOM:
		/* parallel mode, 8 bits, generic */
		lcd.proto = LCD_PROTO_PARALLEL;
		lcd.charset = LCD_CHARSET_NORMAL;
		lcd.pins.e = PIN_AUTOLF;
		lcd.pins.rs = PIN_SELECP;
		lcd.pins.rw = PIN_INITP;

		charlcd->width = 16;
		hdc->bwidth = 40;
		hdc->hwidth = 64;
		charlcd->height = 2;
		break;
	case LCD_TYPE_CUSTOM:
		/* customer-defined */
		lcd.proto = DEFAULT_LCD_PROTO;
		lcd.charset = DEFAULT_LCD_CHARSET;
		/* default geometry will be set later */
		break;
	case LCD_TYPE_HANTRONIX:
		/* parallel mode, 8 bits, hantronix-like */
	default:
		lcd.proto = LCD_PROTO_PARALLEL;
		lcd.charset = LCD_CHARSET_NORMAL;
		lcd.pins.e = PIN_STROBE;
		lcd.pins.rs = PIN_SELECP;

		charlcd->width = 16;
		hdc->bwidth = 40;
		hdc->hwidth = 64;
		charlcd->height = 2;
		break;
	}

	/* Overwrite with module params set on loading */
	if (lcd_height != NOT_SET)
		charlcd->height = lcd_height;
	if (lcd_width != NOT_SET)
		charlcd->width = lcd_width;
	if (lcd_bwidth != NOT_SET)
		hdc->bwidth = lcd_bwidth;
	if (lcd_hwidth != NOT_SET)
		hdc->hwidth = lcd_hwidth;
	if (lcd_charset != NOT_SET)
		lcd.charset = lcd_charset;
	if (lcd_proto != NOT_SET)
		lcd.proto = lcd_proto;
	if (lcd_e_pin != PIN_NOT_SET)
		lcd.pins.e = lcd_e_pin;
	if (lcd_rs_pin != PIN_NOT_SET)
		lcd.pins.rs = lcd_rs_pin;
	if (lcd_rw_pin != PIN_NOT_SET)
		lcd.pins.rw = lcd_rw_pin;
	if (lcd_cl_pin != PIN_NOT_SET)
		lcd.pins.cl = lcd_cl_pin;
	if (lcd_da_pin != PIN_NOT_SET)
		lcd.pins.da = lcd_da_pin;
	if (lcd_bl_pin != PIN_NOT_SET)
		lcd.pins.bl = lcd_bl_pin;

	/* this is used to catch wrong and default values */
	if (charlcd->width <= 0)
		charlcd->width = DEFAULT_LCD_WIDTH;
	if (hdc->bwidth <= 0)
		hdc->bwidth = DEFAULT_LCD_BWIDTH;
	if (hdc->hwidth <= 0)
		hdc->hwidth = DEFAULT_LCD_HWIDTH;
	if (charlcd->height <= 0)
		charlcd->height = DEFAULT_LCD_HEIGHT;

	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
		charlcd->ops = &charlcd_ops;
		hdc->write_data = lcd_write_data_s;
		hdc->write_cmd = lcd_write_cmd_s;

		if (lcd.pins.cl == PIN_NOT_SET)
			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
		if (lcd.pins.da == PIN_NOT_SET)
			lcd.pins.da = DEFAULT_LCD_PIN_SDA;

	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
		charlcd->ops = &charlcd_ops;
		hdc->write_data = lcd_write_data_p8;
		hdc->write_cmd = lcd_write_cmd_p8;

		if (lcd.pins.e == PIN_NOT_SET)
			lcd.pins.e = DEFAULT_LCD_PIN_E;
		if (lcd.pins.rs == PIN_NOT_SET)
			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
		if (lcd.pins.rw == PIN_NOT_SET)
			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
	} else {
		charlcd->ops = &charlcd_ops;
		hdc->write_data = lcd_write_data_tilcd;
		hdc->write_cmd = lcd_write_cmd_tilcd;
	}

	if (lcd.pins.bl == PIN_NOT_SET)
		lcd.pins.bl = DEFAULT_LCD_PIN_BL;

	if (lcd.pins.e == PIN_NOT_SET)
		lcd.pins.e = PIN_NONE;
	if (lcd.pins.rs == PIN_NOT_SET)
		lcd.pins.rs = PIN_NONE;
	if (lcd.pins.rw == PIN_NOT_SET)
		lcd.pins.rw = PIN_NONE;
	if (lcd.pins.bl == PIN_NOT_SET)
		lcd.pins.bl = PIN_NONE;
	if (lcd.pins.cl == PIN_NOT_SET)
		lcd.pins.cl = PIN_NONE;
	if (lcd.pins.da == PIN_NOT_SET)
		lcd.pins.da = PIN_NONE;

	if (lcd.charset == NOT_SET)
		lcd.charset = DEFAULT_LCD_CHARSET;

	if (lcd.charset == LCD_CHARSET_KS0074)
		charlcd->char_conv = lcd_char_conv_ks0074;
	else
		charlcd->char_conv = NULL;

	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);

	lcd.charlcd = charlcd;
	lcd.initialized = true;
}

/*
 * These are the file operation function for user access to /dev/keypad
 */

static ssize_t keypad_read(struct file *file,
			   char __user *buf, size_t count, loff_t *ppos)
{
	unsigned i = *ppos;
	char __user *tmp = buf;

	if (keypad_buflen == 0) {
		if (file->f_flags & O_NONBLOCK)
			return -EAGAIN;

		if (wait_event_interruptible(keypad_read_wait,
					     keypad_buflen != 0))
			return -EINTR;
	}

	for (; count-- > 0 && (keypad_buflen > 0);
	     ++i, ++tmp, --keypad_buflen) {
		put_user(keypad_buffer[keypad_start], tmp);
		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
	}
	*ppos = i;

	return tmp - buf;
}

static int keypad_open(struct inode *inode, struct file *file)
{
	int ret;

	ret = -EBUSY;
	if (!atomic_dec_and_test(&keypad_available))
		goto fail;	/* open only once at a time */

	ret = -EPERM;
	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
		goto fail;

	keypad_buflen = 0;	/* flush the buffer on opening */
	return 0;
 fail:
	atomic_inc(&keypad_available);
	return ret;
}

static int keypad_release(struct inode *inode, struct file *file)
{
	atomic_inc(&keypad_available);
	return 0;
}

static const struct file_operations keypad_fops = {
	.read    = keypad_read,		/* read */
	.open    = keypad_open,		/* open */
	.release = keypad_release,	/* close */
	.llseek  = default_llseek,
};

static struct miscdevice keypad_dev = {
	.minor	= KEYPAD_MINOR,
	.name	= "keypad",
	.fops	= &keypad_fops,
};

static void keypad_send_key(const char *string, int max_len)
{
	/* send the key to the device only if a process is attached to it. */
	if (!atomic_read(&keypad_available)) {
		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
			keypad_buffer[(keypad_start + keypad_buflen++) %
				      KEYPAD_BUFFER] = *string++;
		}
		wake_up_interruptible(&keypad_read_wait);
	}
}

/* this function scans all the bits involving at least one logical signal,
 * and puts the results in the bitfield "phys_read" (one bit per established
 * contact), and sets "phys_read_prev" to "phys_read".
 *
 * Note: to debounce input signals, we will only consider as switched a signal
 * which is stable across 2 measures. Signals which are different between two
 * reads will be kept as they previously were in their logical form (phys_prev).
 * A signal which has just switched will have a 1 in
 * (phys_read ^ phys_read_prev).
 */
static void phys_scan_contacts(void)
{
	int bit, bitval;
	char oldval;
	char bitmask;
	char gndmask;

	phys_prev = phys_curr;
	phys_read_prev = phys_read;
	phys_read = 0;		/* flush all signals */

	/* keep track of old value, with all outputs disabled */
	oldval = r_dtr(pprt) | scan_mask_o;
	/* activate all keyboard outputs (active low) */
	w_dtr(pprt, oldval & ~scan_mask_o);

	/* will have a 1 for each bit set to gnd */
	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
	/* disable all matrix signals */
	w_dtr(pprt, oldval);

	/* now that all outputs are cleared, the only active input bits are
	 * directly connected to the ground
	 */

	/* 1 for each grounded input */
	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;

	/* grounded inputs are signals 40-44 */
	phys_read |= (__u64)gndmask << 40;

	if (bitmask != gndmask) {
		/*
		 * since clearing the outputs changed some inputs, we know
		 * that some input signals are currently tied to some outputs.
		 * So we'll scan them.
		 */
		for (bit = 0; bit < 8; bit++) {
			bitval = BIT(bit);

			if (!(scan_mask_o & bitval))	/* skip unused bits */
				continue;

			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
			phys_read |= (__u64)bitmask << (5 * bit);
		}
		w_dtr(pprt, oldval);	/* disable all outputs */
	}
	/*
	 * this is easy: use old bits when they are flapping,
	 * use new ones when stable
	 */
	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
		    (phys_read & ~(phys_read ^ phys_read_prev));
}

static inline int input_state_high(struct logical_input *input)
{
#if 0
	/* FIXME:
	 * this is an invalid test. It tries to catch
	 * transitions from single-key to multiple-key, but
	 * doesn't take into account the contacts polarity.
	 * The only solution to the problem is to parse keys
	 * from the most complex to the simplest combinations,
	 * and mark them as 'caught' once a combination
	 * matches, then unmatch it for all other ones.
	 */

	/* try to catch dangerous transitions cases :
	 * someone adds a bit, so this signal was a false
	 * positive resulting from a transition. We should
	 * invalidate the signal immediately and not call the
	 * release function.
	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
	 */
	if (((phys_prev & input->mask) == input->value) &&
	    ((phys_curr & input->mask) >  input->value)) {
		input->state = INPUT_ST_LOW; /* invalidate */
		return 1;
	}
#endif

	if ((phys_curr & input->mask) == input->value) {
		if ((input->type == INPUT_TYPE_STD) &&
		    (input->high_timer == 0)) {
			input->high_timer++;
			if (input->u.std.press_fct)
				input->u.std.press_fct(input->u.std.press_data);
		} else if (input->type == INPUT_TYPE_KBD) {
			/* will turn on the light */
			keypressed = 1;

			if (input->high_timer == 0) {
				char *press_str = input->u.kbd.press_str;

				if (press_str[0]) {
					int s = sizeof(input->u.kbd.press_str);

					keypad_send_key(press_str, s);
				}
			}

			if (input->u.kbd.repeat_str[0]) {
				char *repeat_str = input->u.kbd.repeat_str;

				if (input->high_timer >= KEYPAD_REP_START) {
					int s = sizeof(input->u.kbd.repeat_str);

					input->high_timer -= KEYPAD_REP_DELAY;
					keypad_send_key(repeat_str, s);
				}
				/* we will need to come back here soon */
				inputs_stable = 0;
			}

			if (input->high_timer < 255)
				input->high_timer++;
		}
		return 1;
	}

	/* else signal falling down. Let's fall through. */
	input->state = INPUT_ST_FALLING;
	input->fall_timer = 0;

	return 0;
}

static inline void input_state_falling(struct logical_input *input)
{
#if 0
	/* FIXME !!! same comment as in input_state_high */
	if (((phys_prev & input->mask) == input->value) &&
	    ((phys_curr & input->mask) >  input->value)) {
		input->state = INPUT_ST_LOW;	/* invalidate */
		return;
	}
#endif

	if ((phys_curr & input->mask) == input->value) {
		if (input->type == INPUT_TYPE_KBD) {
			/* will turn on the light */
			keypressed = 1;

			if (input->u.kbd.repeat_str[0]) {
				char *repeat_str = input->u.kbd.repeat_str;

				if (input->high_timer >= KEYPAD_REP_START) {
					int s = sizeof(input->u.kbd.repeat_str);

					input->high_timer -= KEYPAD_REP_DELAY;
					keypad_send_key(repeat_str, s);
				}
				/* we will need to come back here soon */
				inputs_stable = 0;
			}

			if (input->high_timer < 255)
				input->high_timer++;
		}
		input->state = INPUT_ST_HIGH;
	} else if (input->fall_timer >= input->fall_time) {
		/* call release event */
		if (input->type == INPUT_TYPE_STD) {
			void (*release_fct)(int) = input->u.std.release_fct;

			if (release_fct)
				release_fct(input->u.std.release_data);
		} else if (input->type == INPUT_TYPE_KBD) {
			char *release_str = input->u.kbd.release_str;

			if (release_str[0]) {
				int s = sizeof(input->u.kbd.release_str);

				keypad_send_key(release_str, s);
			}
		}

		input->state = INPUT_ST_LOW;
	} else {
		input->fall_timer++;
		inputs_stable = 0;
	}
}

static void panel_process_inputs(void)
{
	struct logical_input *input;

	keypressed = 0;
	inputs_stable = 1;
	list_for_each_entry(input, &logical_inputs, list) {
		switch (input->state) {
		case INPUT_ST_LOW:
			if ((phys_curr & input->mask) != input->value)
				break;
			/* if all needed ones were already set previously,
			 * this means that this logical signal has been
			 * activated by the releasing of another combined
			 * signal, so we don't want to match.
			 * eg: AB -(release B)-> A -(release A)-> 0 :
			 *     don't match A.
			 */
			if ((phys_prev & input->mask) == input->value)
				break;
			input->rise_timer = 0;
			input->state = INPUT_ST_RISING;
			fallthrough;
		case INPUT_ST_RISING:
			if ((phys_curr & input->mask) != input->value) {
				input->state = INPUT_ST_LOW;
				break;
			}
			if (input->rise_timer < input->rise_time) {
				inputs_stable = 0;
				input->rise_timer++;
				break;
			}
			input->high_timer = 0;
			input->state = INPUT_ST_HIGH;
			fallthrough;
		case INPUT_ST_HIGH:
			if (input_state_high(input))
				break;
			fallthrough;
		case INPUT_ST_FALLING:
			input_state_falling(input);
		}
	}
}

static void panel_scan_timer(struct timer_list *unused)
{
	if (keypad.enabled && keypad_initialized) {
		if (spin_trylock_irq(&pprt_lock)) {
			phys_scan_contacts();

			/* no need for the parport anymore */
			spin_unlock_irq(&pprt_lock);
		}

		if (!inputs_stable || phys_curr != phys_prev)
			panel_process_inputs();
	}

	if (keypressed && lcd.enabled && lcd.initialized)
		charlcd_poke(lcd.charlcd);

	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
}

static void init_scan_timer(void)
{
	if (scan_timer.function)
		return;		/* already started */

	timer_setup(&scan_timer, panel_scan_timer, 0);
	scan_timer.expires = jiffies + INPUT_POLL_TIME;
	add_timer(&scan_timer);
}

/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
 * if <omask> or <imask> are non-null, they will be or'ed with the bits
 * corresponding to out and in bits respectively.
 * returns 1 if ok, 0 if error (in which case, nothing is written).
 */
static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
			  u8 *imask, u8 *omask)
{
	const char sigtab[] = "EeSsPpAaBb";
	u8 im, om;
	__u64 m, v;

	om = 0;
	im = 0;
	m = 0ULL;
	v = 0ULL;
	while (*name) {
		int in, out, bit, neg;
		const char *idx;

		idx = strchr(sigtab, *name);
		if (!idx)
			return 0;	/* input name not found */

		in = idx - sigtab;
		neg = (in & 1);	/* odd (lower) names are negated */
		in >>= 1;
		im |= BIT(in);

		name++;
		if (*name >= '0' && *name <= '7') {
			out = *name - '0';
			om |= BIT(out);
		} else if (*name == '-') {
			out = 8;
		} else {
			return 0;	/* unknown bit name */
		}

		bit = (out * 5) + in;

		m |= 1ULL << bit;
		if (!neg)
			v |= 1ULL << bit;
		name++;
	}
	*mask = m;
	*value = v;
	if (imask)
		*imask |= im;
	if (omask)
		*omask |= om;
	return 1;
}

/* tries to bind a key to the signal name <name>. The key will send the
 * strings <press>, <repeat>, <release> for these respective events.
 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
 */
static struct logical_input *panel_bind_key(const char *name, const char *press,
					    const char *repeat,
					    const char *release)
{
	struct logical_input *key;

	key = kzalloc(sizeof(*key), GFP_KERNEL);
	if (!key)
		return NULL;

	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
			     &scan_mask_o)) {
		kfree(key);
		return NULL;
	}

	key->type = INPUT_TYPE_KBD;
	key->state = INPUT_ST_LOW;
	key->rise_time = 1;
	key->fall_time = 1;

	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
	strncpy(key->u.kbd.release_str, release,
		sizeof(key->u.kbd.release_str));
	list_add(&key->list, &logical_inputs);
	return key;
}

#if 0
/* tries to bind a callback function to the signal name <name>. The function
 * <press_fct> will be called with the <press_data> arg when the signal is
 * activated, and so on for <release_fct>/<release_data>
 * Returns the pointer to the new signal if ok, NULL if the signal could not
 * be bound.
 */
static struct logical_input *panel_bind_callback(char *name,
						 void (*press_fct)(int),
						 int press_data,
						 void (*release_fct)(int),
						 int release_data)
{
	struct logical_input *callback;

	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
	if (!callback)
		return NULL;

	memset(callback, 0, sizeof(struct logical_input));
	if (!input_name2mask(name, &callback->mask, &callback->value,
			     &scan_mask_i, &scan_mask_o))
		return NULL;

	callback->type = INPUT_TYPE_STD;
	callback->state = INPUT_ST_LOW;
	callback->rise_time = 1;
	callback->fall_time = 1;
	callback->u.std.press_fct = press_fct;
	callback->u.std.press_data = press_data;
	callback->u.std.release_fct = release_fct;
	callback->u.std.release_data = release_data;
	list_add(&callback->list, &logical_inputs);
	return callback;
}
#endif

static void keypad_init(void)
{
	int keynum;

	init_waitqueue_head(&keypad_read_wait);
	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */

	/* Let's create all known keys */

	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
		panel_bind_key(keypad_profile[keynum][0],
			       keypad_profile[keynum][1],
			       keypad_profile[keynum][2],
			       keypad_profile[keynum][3]);
	}

	init_scan_timer();
	keypad_initialized = 1;
}

/**************************************************/
/* device initialization                          */
/**************************************************/

static void panel_attach(struct parport *port)
{
	struct pardev_cb panel_cb;

	if (port->number != parport)
		return;

	if (pprt) {
		pr_err("%s: port->number=%d parport=%d, already registered!\n",
		       __func__, port->number, parport);
		return;
	}

	memset(&panel_cb, 0, sizeof(panel_cb));
	panel_cb.private = &pprt;
	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */

	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
	if (!pprt) {
		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
		       __func__, port->number, parport);
		return;
	}

	if (parport_claim(pprt)) {
		pr_err("could not claim access to parport%d. Aborting.\n",
		       parport);
		goto err_unreg_device;
	}

	/* must init LCD first, just in case an IRQ from the keypad is
	 * generated at keypad init
	 */
	if (lcd.enabled) {
		lcd_init();
		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
			goto err_unreg_device;
	}

	if (keypad.enabled) {
		keypad_init();
		if (misc_register(&keypad_dev))
			goto err_lcd_unreg;
	}
	return;

err_lcd_unreg:
	if (scan_timer.function)
		del_timer_sync(&scan_timer);
	if (lcd.enabled)
		charlcd_unregister(lcd.charlcd);
err_unreg_device:
	kfree(lcd.charlcd);
	lcd.charlcd = NULL;
	parport_unregister_device(pprt);
	pprt = NULL;
}

static void panel_detach(struct parport *port)
{
	if (port->number != parport)
		return;

	if (!pprt) {
		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
		       __func__, port->number, parport);
		return;
	}
	if (scan_timer.function)
		del_timer_sync(&scan_timer);

	if (keypad.enabled) {
		misc_deregister(&keypad_dev);
		keypad_initialized = 0;
	}

	if (lcd.enabled) {
		charlcd_unregister(lcd.charlcd);
		lcd.initialized = false;
		kfree(lcd.charlcd->drvdata);
		kfree(lcd.charlcd);
		lcd.charlcd = NULL;
	}

	/* TODO: free all input signals */
	parport_release(pprt);
	parport_unregister_device(pprt);
	pprt = NULL;
}

static struct parport_driver panel_driver = {
	.name = "panel",
	.match_port = panel_attach,
	.detach = panel_detach,
	.devmodel = true,
};

/* init function */
static int __init panel_init_module(void)
{
	int selected_keypad_type = NOT_SET, err;

	/* take care of an eventual profile */
	switch (profile) {
	case PANEL_PROFILE_CUSTOM:
		/* custom profile */
		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
		selected_lcd_type = DEFAULT_LCD_TYPE;
		break;
	case PANEL_PROFILE_OLD:
		/* 8 bits, 2*16, old keypad */
		selected_keypad_type = KEYPAD_TYPE_OLD;
		selected_lcd_type = LCD_TYPE_OLD;

		/* TODO: This two are a little hacky, sort it out later */
		if (lcd_width == NOT_SET)
			lcd_width = 16;
		if (lcd_hwidth == NOT_SET)
			lcd_hwidth = 16;
		break;
	case PANEL_PROFILE_NEW:
		/* serial, 2*16, new keypad */
		selected_keypad_type = KEYPAD_TYPE_NEW;
		selected_lcd_type = LCD_TYPE_KS0074;
		break;
	case PANEL_PROFILE_HANTRONIX:
		/* 8 bits, 2*16 hantronix-like, no keypad */
		selected_keypad_type = KEYPAD_TYPE_NONE;
		selected_lcd_type = LCD_TYPE_HANTRONIX;
		break;
	case PANEL_PROFILE_NEXCOM:
		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
		selected_lcd_type = LCD_TYPE_NEXCOM;
		break;
	case PANEL_PROFILE_LARGE:
		/* 8 bits, 2*40, old keypad */
		selected_keypad_type = KEYPAD_TYPE_OLD;
		selected_lcd_type = LCD_TYPE_OLD;
		break;
	}

	/*
	 * Overwrite selection with module param values (both keypad and lcd),
	 * where the deprecated params have lower prio.
	 */
	if (keypad_enabled != NOT_SET)
		selected_keypad_type = keypad_enabled;
	if (keypad_type != NOT_SET)
		selected_keypad_type = keypad_type;

	keypad.enabled = (selected_keypad_type > 0);

	if (lcd_enabled != NOT_SET)
		selected_lcd_type = lcd_enabled;
	if (lcd_type != NOT_SET)
		selected_lcd_type = lcd_type;

	lcd.enabled = (selected_lcd_type > 0);

	if (lcd.enabled) {
		/*
		 * Init lcd struct with load-time values to preserve exact
		 * current functionality (at least for now).
		 */
		lcd.charset = lcd_charset;
		lcd.proto = lcd_proto;
		lcd.pins.e = lcd_e_pin;
		lcd.pins.rs = lcd_rs_pin;
		lcd.pins.rw = lcd_rw_pin;
		lcd.pins.cl = lcd_cl_pin;
		lcd.pins.da = lcd_da_pin;
		lcd.pins.bl = lcd_bl_pin;
	}

	switch (selected_keypad_type) {
	case KEYPAD_TYPE_OLD:
		keypad_profile = old_keypad_profile;
		break;
	case KEYPAD_TYPE_NEW:
		keypad_profile = new_keypad_profile;
		break;
	case KEYPAD_TYPE_NEXCOM:
		keypad_profile = nexcom_keypad_profile;
		break;
	default:
		keypad_profile = NULL;
		break;
	}

	if (!lcd.enabled && !keypad.enabled) {
		/* no device enabled, let's exit */
		pr_err("panel driver disabled.\n");
		return -ENODEV;
	}

	err = parport_register_driver(&panel_driver);
	if (err) {
		pr_err("could not register with parport. Aborting.\n");
		return err;
	}

	if (pprt)
		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
			parport, pprt->port->base);
	else
		pr_info("panel driver not yet registered\n");
	return 0;
}

static void __exit panel_cleanup_module(void)
{
	parport_unregister_driver(&panel_driver);
}

module_init(panel_init_module);
module_exit(panel_cleanup_module);
MODULE_AUTHOR("Willy Tarreau");
MODULE_LICENSE("GPL");
back to top