https://github.com/QBioLab/sequence-data-analysis-for-noise-control
Revision a488b15c0418a8e604ce6339aae7b505ae3252c9 authored by Aria on 20 December 2020, 06:24:49 UTC, committed by GitHub on 20 December 2020, 06:24:49 UTC
1 parent 2919a0c
Tip revision: a488b15c0418a8e604ce6339aae7b505ae3252c9 authored by Aria on 20 December 2020, 06:24:49 UTC
Update README.md
Update README.md
Tip revision: a488b15
calucate_depth.py
import pyBigWig
from collections import defaultdict
from matplotlib import pyplot as plt
import numpy as np
site = defaultdict(list)
with open('../metadata/reference/tss_sites.txt') as fin:
for line in fin:
line = line.strip().split('-')
site[line[0]].append([line[1],line[2],int(line[3])])
#ChIP-seq H3K27ac
bws = {}
# 1-H3K27AC_combined: ChIP-seq_for_HeLa-AB1_H3K27ac_AM_25uw_low
# 2-H3K27AC_combined: ChIP-seq_for_HeLa-AB1_H3K27ac_AM_25uw_high
# 3-H3K27AC_combined: ChIP-seq_for_HeLa-AB1_H3K27ac_Dark_control
prefix = ['1-H3K27AC_combined','2-H3K27AC_combined','3-H3K27AC_combined']
for p in prefix:
bws[p] = pyBigWig.open('../metadata/chip-seq/{}.SeqDepthNorm.bw'.format(p))
fig, ax = plt.subplots()
length = 1000
data = {}
for p in prefix:
depth = bws[p]
total = np.array(depth.values(site['mRN'][0][1],
site['mRN'][0][2]-length,
site['mRN'][0][2]+length))
for s in site['mRN'][1:]:
values = depth.values(s[1],s[2]-length,s[2]+length)
if s[0] == 'forward':
total += np.array(values)
else:
values.reverse()
total += np.array(values)
data[p] = total
plt.plot(np.array(range(0,2*length))-length,total)
plt.legend(prefix)
# #ATAC-seq
# bws = {}
# # high: ATAC-seq_for_HeLa-AB1_AM_25uw_high
# # low: ATAC-seq_for_HeLa-AB1_AM_25uw_low
# # dark: ATAC-seq_for_HeLa-AB1_Dark_control
# prefix = ['high','low','dark']
# for p in prefix:
# bws[p] = pyBigWig.open('../metadata/atac-seq/{}.SeqDepthNorm.bw'.format(p))
# fig, ax = plt.subplots()
# length = 1000
# for p in prefix:
# depth = bws[p]
# total = np.array(depth.values(site['mRN'][0][1],
# site['mRN'][0][2]-length,
# site['mRN'][0][2]+length))
# for s in site['mRN'][1:]:
# values = depth.values(s[1],s[2]-length,s[2]+length)
# if s[0] == 'forward':
# total += np.array(values)
# else:
# values.reverse()
# total += np.array(values)
# data[p] = total
# plt.plot(np.array(range(0,2*length))-length,total)
# plt.legend(prefix)
# #scATAC-seq
# prefix = []
# with open('../rawdata/scatac-seq/HGC20191230001-0003_lane7/L7_md5sum.check.out') as fin:
# pattern = '_R1_001.fastq'
# for line in fin:
# if pattern in line and 'HW' in line:
# line = line.split(' ')[0]
# line = line.replace(pattern,' ')
# line = line.split(' ')[0]
# prefix.append(line)
# with open('../rawdata/scatac-seq/HGC20191230001-0003_lane8/L8_md5sum.check.out') as fin:
# pattern = '_R1_001.fastq'
# for line in fin:
# if pattern in line and 'HW' in line:
# line = line.split(' ')[0]
# line = line.replace(pattern,' ')
# line = line.split(' ')[0]
# prefix.append(line)
# bws = {}
# for p in prefix:
# bws[p] = pyBigWig.open('../metadata/scatac-seq/{}.SeqDepthNorm.bw'.format(p))
# # HW1: scATAC-seq_for_HeLa-AB1_150min_light_on_80uw_384
# # HW2: scATAC-seq_for_HeLa-AB1_dark_control_384
# # HW3: scATAC-seq_for_HeLa-AB1_600min_light_on_80uw_384
# # HW4: scATAC-seq_for_HeLa-AB1_750min_light_on_80uw_384
# # HW5: scATAC-seq_for_HeLa-AB1_1200min_light_on_80uw_384
# # HW6: scATAC-seq_for_HeLa-AB1_1350min_light_on_80uw_384
# exp = ['HW1','HW2','HW3','HW4','HW5','HW6']
# length = 1000
# data = {}
# for e in exp:
# total_exp = []
# for p in prefix:
# if e in p:
# depth = bws[p]
# try:
# total = np.array(depth.values(site['mRN'][0][1],
# site['mRN'][0][2]-length,
# site['mRN'][0][2]+length))
# except RuntimeError:
# print('mRN',e,p,s)
# for s in site['mRN'][1:]:
# try:
# values = depth.values(s[1],s[2]-length,s[2]+length)
# if s[0] == 'forward':
# total += np.array(values)
# else:
# values.reverse()
# total += np.array(values)
# except RuntimeError:
# print('mRN',e,p,s)
# total_exp.append(total)
# total_exp = np.array(total_exp)
# data[e] = total_exp

Computing file changes ...