Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision a7ab0a6819d450d1b379aa5650b9efef9d5f954e authored by James Scott on 10 February 2016, 04:18:57 UTC, committed by James Scott on 10 February 2016, 04:18:57 UTC
added toy logit example in R code
1 parent 97c546a
  • Files
  • Changes
  • 5595290
  • /
  • R
  • /
  • example_1Dlogit.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:a7ab0a6819d450d1b379aa5650b9efef9d5f954e
directory badge Iframe embedding
swh:1:dir:2e1066beccc045737527faebe2d34f34cc8e1273
content badge Iframe embedding
swh:1:cnt:977a23395477fbe5bbbd7c6fa96a2a13f3f687a3
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
example_1Dlogit.R
# must install glmgen, see Github page:
# https://github.com/statsmaths/glmgen
library(glmgen)

# logit utilities (forward and inverse transform)
flogit = function(x) log(x/(1-x))
ilogit = function(x) 1/{1+exp(-x)}

# Simulated data settings
n = 5000
beta_true = rep(-4,n) 
beta_true[1500:2000] = 0   # an enriched region 500 sites long
w_true = ilogit(beta_true)
gamma_true = rbinom(n, 1, w_true)
z = rnorm(n)
z[gamma_true == 1] = rnorm(sum(gamma_true), 0, 3)
plot(z, xlab='X', ylab='Z score', pch=19, col=rgb(0.2,0.2,0.2,0.2))

# We know the null and alternative densities
f0 = dnorm(z,0,1)
f1 = dnorm(z,0,3)

# Fixed lambda for now
lambda = 5

# Initial settings for algorithm
drift = 1
rel_tol = 1e-4
beta_hat = rep(0,n)
prior_prob = ilogit(beta_hat)
objective_old = sum(log(prior_prob*f1 + (1-prior_prob)*f0))

while(drift > rel_tol) {
	# E step
	prior_prob = ilogit(beta_hat)
	m1 = prior_prob*f1
	m0 = (1-prior_prob)*f0
	post_prob = m1/(m1+m0)
	
	# M step
	ebeta = exp(beta_hat)
	weights = ebeta/{(1+ebeta)^2}
	y = {(1+ebeta)^2}*post_prob/ebeta + beta_hat - (1+ebeta)
	weights = prior_prob*(1-prior_prob)
	y = beta_hat - (prior_prob - post_prob)/weights
	
	# Solve the 1D FL problem using the subroutine in glmgen
	fl0 = trendfilter(drop(y), weights=drop(weights), k = 0, family='gaussian', lambda=lambda)

	beta_hat = fl0$beta
	prior_prob = ilogit(beta_hat)

	objective_new = sum(log(prior_prob*f1 + (1-prior_prob)*f0))
	drift = abs(objective_old - objective_new)/(abs(objective_old) + rel_tol)
	objective_old = objective_new
}


# Plot the results

par(mfrow=c(1,2))
plot(z, pch=19, cex=0.6,col=rgb(0.2,0.2,0.2,0.2), las=1,
	cex.axis=0.8, xlab='x', ylab='z score')
rug({1:n}[which(gamma_true==1)])

prob_grid = c(0.01,0.05,0.1,0.25,0.5)
plot(flogit(w_true), las=1, ylim=range(flogit(prob_grid)),
	type='l', col='black', lwd=4, axes=FALSE)
lines(beta_hat, col='gray', lwd=2)
abline(h=flogit(mean(w_true)), lty='dotted')
axis(1, cex.axis=0.8, las=1)
axis(2, cex.axis=0.8, at = flogit(prob_grid), labels=prob_grid, las=1)
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API