Revision a9851832857dc1e4efefca1713f5cff3e168a25c authored by Heiko Carstens on 29 April 2011, 08:42:19 UTC, committed by Martin Schwidefsky on 29 April 2011, 08:42:25 UTC
pfault, dasd diag and virtio all use the same external interrupt number.
The respective interrupt handlers decide by the subcode if they are
meant to handle the interrupt.
Counting is currently done before looking at the subcode which means
each handler counts an interrupt even if it is not handling it.
Fix this by moving the kstat code after the code which looks at the
subcode.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
1 parent ed96158
Raw File
ts_bm.c
/*
 * lib/ts_bm.c		Boyer-Moore text search implementation
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Pablo Neira Ayuso <pablo@eurodev.net>
 *
 * ==========================================================================
 * 
 *   Implements Boyer-Moore string matching algorithm:
 *
 *   [1] A Fast String Searching Algorithm, R.S. Boyer and Moore.
 *       Communications of the Association for Computing Machinery, 
 *       20(10), 1977, pp. 762-772.
 *       http://www.cs.utexas.edu/users/moore/publications/fstrpos.pdf
 *
 *   [2] Handbook of Exact String Matching Algorithms, Thierry Lecroq, 2004
 *       http://www-igm.univ-mlv.fr/~lecroq/string/string.pdf
 *
 *   Note: Since Boyer-Moore (BM) performs searches for matchings from right 
 *   to left, it's still possible that a matching could be spread over 
 *   multiple blocks, in that case this algorithm won't find any coincidence.
 *   
 *   If you're willing to ensure that such thing won't ever happen, use the
 *   Knuth-Pratt-Morris (KMP) implementation instead. In conclusion, choose 
 *   the proper string search algorithm depending on your setting. 
 *
 *   Say you're using the textsearch infrastructure for filtering, NIDS or 
 *   any similar security focused purpose, then go KMP. Otherwise, if you 
 *   really care about performance, say you're classifying packets to apply
 *   Quality of Service (QoS) policies, and you don't mind about possible
 *   matchings spread over multiple fragments, then go BM.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/textsearch.h>

/* Alphabet size, use ASCII */
#define ASIZE 256

#if 0
#define DEBUGP printk
#else
#define DEBUGP(args, format...)
#endif

struct ts_bm
{
	u8 *		pattern;
	unsigned int	patlen;
	unsigned int 	bad_shift[ASIZE];
	unsigned int	good_shift[0];
};

static unsigned int bm_find(struct ts_config *conf, struct ts_state *state)
{
	struct ts_bm *bm = ts_config_priv(conf);
	unsigned int i, text_len, consumed = state->offset;
	const u8 *text;
	int shift = bm->patlen - 1, bs;
	const u8 icase = conf->flags & TS_IGNORECASE;

	for (;;) {
		text_len = conf->get_next_block(consumed, &text, conf, state);

		if (unlikely(text_len == 0))
			break;

		while (shift < text_len) {
			DEBUGP("Searching in position %d (%c)\n", 
				shift, text[shift]);
			for (i = 0; i < bm->patlen; i++) 
				if ((icase ? toupper(text[shift-i])
				    : text[shift-i])
					!= bm->pattern[bm->patlen-1-i])
				     goto next;

			/* London calling... */
			DEBUGP("found!\n");
			return consumed += (shift-(bm->patlen-1));

next:			bs = bm->bad_shift[text[shift-i]];

			/* Now jumping to... */
			shift = max_t(int, shift-i+bs, shift+bm->good_shift[i]);
		}
		consumed += text_len;
	}

	return UINT_MAX;
}

static int subpattern(u8 *pattern, int i, int j, int g)
{
	int x = i+g-1, y = j+g-1, ret = 0;

	while(pattern[x--] == pattern[y--]) {
		if (y < 0) {
			ret = 1;
			break;
		}
		if (--g == 0) {
			ret = pattern[i-1] != pattern[j-1];
			break;
		}
	}

	return ret;
}

static void compute_prefix_tbl(struct ts_bm *bm, int flags)
{
	int i, j, g;

	for (i = 0; i < ASIZE; i++)
		bm->bad_shift[i] = bm->patlen;
	for (i = 0; i < bm->patlen - 1; i++) {
		bm->bad_shift[bm->pattern[i]] = bm->patlen - 1 - i;
		if (flags & TS_IGNORECASE)
			bm->bad_shift[tolower(bm->pattern[i])]
			    = bm->patlen - 1 - i;
	}

	/* Compute the good shift array, used to match reocurrences 
	 * of a subpattern */
	bm->good_shift[0] = 1;
	for (i = 1; i < bm->patlen; i++)
		bm->good_shift[i] = bm->patlen;
        for (i = bm->patlen-1, g = 1; i > 0; g++, i--) {
		for (j = i-1; j >= 1-g ; j--)
			if (subpattern(bm->pattern, i, j, g)) {
				bm->good_shift[g] = bm->patlen-j-g;
				break;
			}
	}
}

static struct ts_config *bm_init(const void *pattern, unsigned int len,
				 gfp_t gfp_mask, int flags)
{
	struct ts_config *conf;
	struct ts_bm *bm;
	int i;
	unsigned int prefix_tbl_len = len * sizeof(unsigned int);
	size_t priv_size = sizeof(*bm) + len + prefix_tbl_len;

	conf = alloc_ts_config(priv_size, gfp_mask);
	if (IS_ERR(conf))
		return conf;

	conf->flags = flags;
	bm = ts_config_priv(conf);
	bm->patlen = len;
	bm->pattern = (u8 *) bm->good_shift + prefix_tbl_len;
	if (flags & TS_IGNORECASE)
		for (i = 0; i < len; i++)
			bm->pattern[i] = toupper(((u8 *)pattern)[i]);
	else
		memcpy(bm->pattern, pattern, len);
	compute_prefix_tbl(bm, flags);

	return conf;
}

static void *bm_get_pattern(struct ts_config *conf)
{
	struct ts_bm *bm = ts_config_priv(conf);
	return bm->pattern;
}

static unsigned int bm_get_pattern_len(struct ts_config *conf)
{
	struct ts_bm *bm = ts_config_priv(conf);
	return bm->patlen;
}

static struct ts_ops bm_ops = {
	.name		  = "bm",
	.find		  = bm_find,
	.init		  = bm_init,
	.get_pattern	  = bm_get_pattern,
	.get_pattern_len  = bm_get_pattern_len,
	.owner		  = THIS_MODULE,
	.list		  = LIST_HEAD_INIT(bm_ops.list)
};

static int __init init_bm(void)
{
	return textsearch_register(&bm_ops);
}

static void __exit exit_bm(void)
{
	textsearch_unregister(&bm_ops);
}

MODULE_LICENSE("GPL");

module_init(init_bm);
module_exit(exit_bm);
back to top