https://github.com/GPflow/GPflow
Revision ad6e03114fa6903585c31da1528a47f4dcb2049d authored by Vincent Dutordoir on 15 September 2020, 15:37:25 UTC, committed by GitHub on 15 September 2020, 15:37:25 UTC
* HeteroskedasticLikelihood base class draft

* fixup

* cleanup

* cleanup heteroskedastic

* multioutput likelihood WIP

* Notebook exemplifying HeteroskedasticTFPDistribution usage (#1462)

* fixes

* typo fix; reshaping fix

* notebook showing how to use HeteroskedasticTFPDistribution likelihood

* converting to .pct.py format

* removed .ipynb

* better descriptions

* black auto-formatting

Co-authored-by: Gustavo Carvalho <gustavo.carvalho@delfosim.com>

* note and bugfix

* add comment

* Adding heteroskedastic tests (#1508)

These tests ensure that heteroskedastic likelihood with a constant variance, will give the same results as a Gaussian likelihood with the same variance.

* testing

* added QuadratureLikelihood to base, refactored ScalarLikelihood to use it

* fix

* using the first dimension to hold the quadrature summation

* adapting ndiagquad wrapper

* merged with gustavocmv/quadrature-change-shape

* removed unecessary tf.init_scope

* removed print and tf.print

* removed print and tf.print

* Type annotations

Co-authored-by: Vincent Dutordoir <dutordoirv@gmail.com>

* Work

* Fix test

* Remove multioutput from PR

* Fix notebook

* Add student t test

* More tests

* Copyright

* Removed NDiagGHQuadratureLikelihood class in favor of non-abstract QuadratureLikelihood

* _set_latent_and_observation_dimension_eagerly

* n_gh ---> num_gauss_hermite_points

* removed NDiagGHQuadratureLikelihood from test

* black

* bugfix

* removing NDiagGHQuadratureLikelihood from test

* fixed bad commenting

* black

* refactoring scalar likelihood

* adding dtype casts to quadrature

* black

* small merging fixes

* DONE: swap n_gh for num_gauss_hermite_points

* black

Co-authored-by: ST John <st@prowler.io>
Co-authored-by: gustavocmv <47801305+gustavocmv@users.noreply.github.com>
Co-authored-by: Gustavo Carvalho <gustavo.carvalho@delfosim.com>
Co-authored-by: st-- <st--@users.noreply.github.com>
Co-authored-by: joshuacoales-pio <47976939+joshuacoales-pio@users.noreply.github.com>
1 parent 799b659
Raw File
Tip revision: ad6e03114fa6903585c31da1528a47f4dcb2049d authored by Vincent Dutordoir on 15 September 2020, 15:37:25 UTC
Multi Latent Likelihoods using new quadrature Likelihoods (#1559)
Tip revision: ad6e031
test_method_equivalence.py
# Copyright 2019 the GPflow authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import pytest
import tensorflow as tf
from numpy.testing import assert_allclose

import gpflow
from gpflow.config import default_jitter
from gpflow.mean_functions import Constant
from gpflow.models import maximum_log_likelihood_objective

rng = np.random.RandomState(0)


class Datum:
    X = rng.rand(20, 1) * 10
    Y = np.sin(X) + 0.9 * np.cos(X * 1.6) + rng.randn(*X.shape) * 0.8
    Y = np.tile(Y, 2)  # two identical columns
    Xtest = rng.rand(10, 1) * 10
    data = (X, Y)


class DatumVGP:
    N, Ns, DX, DY = 100, 10, 2, 2
    np.random.seed(1)
    X = np.random.randn(N, DX)
    Xs = np.random.randn(Ns, DX)
    Y = np.random.randn(N, DY)
    q_mu = np.random.randn(N, DY)
    q_sqrt = np.random.randn(DY, N, N)
    q_alpha = np.random.randn(N, DX)
    q_lambda = np.random.randn(N, DX) ** 2
    data = (X, Y)


def _create_full_gp_model():
    """
    GP Regression
    """
    full_gp_model = gpflow.models.GPR(
        (Datum.X, Datum.Y),
        kernel=gpflow.kernels.SquaredExponential(),
        mean_function=gpflow.mean_functions.Constant(),
    )

    opt = gpflow.optimizers.Scipy()
    opt.minimize(
        full_gp_model.training_loss,
        variables=full_gp_model.trainable_variables,
        options=dict(maxiter=300),
    )
    return full_gp_model


def _create_approximate_models():
    """
    1) Variational GP (with the likelihood set to Gaussian)
    2) Sparse variational GP (likelihood is Gaussian, inducing points
       at the data)
    3) Sparse variational GP (as above, but with the whitening rotation
       of the inducing variables)
    4) Sparse variational GP Regression (as above, but there the inducing
       variables are 'collapsed' out, as in Titsias 2009)
    5) FITC Sparse GP Regression
    """
    model_1 = gpflow.models.VGP(
        (Datum.X, Datum.Y),
        gpflow.kernels.SquaredExponential(),
        likelihood=gpflow.likelihoods.Gaussian(),
        mean_function=gpflow.mean_functions.Constant(),
    )
    model_2 = gpflow.models.SVGP(
        gpflow.kernels.SquaredExponential(),
        gpflow.likelihoods.Gaussian(),
        inducing_variable=Datum.X.copy(),
        q_diag=False,
        mean_function=gpflow.mean_functions.Constant(),
        num_latent_gps=Datum.Y.shape[1],
    )
    gpflow.set_trainable(model_2.inducing_variable, False)
    model_3 = gpflow.models.SVGP(
        kernel=gpflow.kernels.SquaredExponential(),
        likelihood=gpflow.likelihoods.Gaussian(),
        inducing_variable=Datum.X.copy(),
        q_diag=False,
        whiten=True,
        mean_function=gpflow.mean_functions.Constant(),
        num_latent_gps=Datum.Y.shape[1],
    )
    gpflow.set_trainable(model_3.inducing_variable, False)
    model_4 = gpflow.models.GPRFITC(
        (Datum.X, Datum.Y),
        kernel=gpflow.kernels.SquaredExponential(),
        inducing_variable=Datum.X.copy(),
        mean_function=Constant(),
    )
    gpflow.set_trainable(model_4.inducing_variable, False)
    model_5 = gpflow.models.SGPR(
        (Datum.X, Datum.Y),
        gpflow.kernels.SquaredExponential(),
        inducing_variable=Datum.X.copy(),
        mean_function=Constant(),
    )
    gpflow.set_trainable(model_5.inducing_variable, False)

    # Train models

    opt = gpflow.optimizers.Scipy()

    opt.minimize(
        model_1.training_loss, variables=model_1.trainable_variables, options=dict(maxiter=300),
    )
    opt.minimize(
        model_2.training_loss_closure(Datum.data),
        variables=model_2.trainable_variables,
        options=dict(maxiter=300),
    )
    opt.minimize(
        model_3.training_loss_closure(Datum.data),
        variables=model_3.trainable_variables,
        options=dict(maxiter=300),
    )
    opt.minimize(
        model_4.training_loss, variables=model_4.trainable_variables, options=dict(maxiter=300),
    )
    opt.minimize(
        model_5.training_loss, variables=model_5.trainable_variables, options=dict(maxiter=300),
    )

    return model_1, model_2, model_3, model_4, model_5


def _create_vgp_model(kernel, likelihood, q_mu=None, q_sqrt=None):
    model_vgp = gpflow.models.VGP((DatumVGP.X, DatumVGP.Y), kernel, likelihood)
    if q_mu is not None and q_sqrt is not None:
        model_vgp.q_mu.assign(q_mu)
        model_vgp.q_sqrt.assign(q_sqrt)
    return model_vgp


def _create_vgpao_model(kernel, likelihood, q_alpha, q_lambda):
    model_vgpoa = gpflow.models.VGPOpperArchambeau(
        (DatumVGP.X, DatumVGP.Y), kernel, likelihood, num_latent_gps=DatumVGP.DY
    )
    model_vgpoa.q_alpha.assign(q_alpha)
    model_vgpoa.q_lambda.assign(q_lambda)

    return model_vgpoa


def _create_svgp_model(kernel, likelihood, q_mu, q_sqrt, whiten):
    model_svgp = gpflow.models.SVGP(
        kernel,
        likelihood,
        DatumVGP.X.copy(),
        whiten=whiten,
        q_diag=False,
        num_latent_gps=DatumVGP.DY,
    )
    model_svgp.q_mu.assign(q_mu)
    model_svgp.q_sqrt.assign(q_sqrt)
    return model_svgp


@pytest.mark.parametrize("approximate_model", _create_approximate_models())
def test_equivalence(approximate_model):
    """
    With a Gaussian likelihood, and inducing points (where appropriate)
    positioned at the data, many of the gpflow methods are equivalent (perhaps
    subject to some optimization).
    """
    gpr_model = _create_full_gp_model()
    gpr_likelihood = gpr_model.log_marginal_likelihood()
    approximate_likelihood = maximum_log_likelihood_objective(approximate_model, Datum.data)
    assert_allclose(approximate_likelihood, gpr_likelihood, rtol=1e-6)

    gpr_kernel_ls = gpr_model.kernel.lengthscales.numpy()
    gpr_kernel_var = gpr_model.kernel.variance.numpy()

    approximate_kernel_ls = approximate_model.kernel.lengthscales.numpy()
    approximate_kernel_var = approximate_model.kernel.variance.numpy()

    assert_allclose(gpr_kernel_ls, approximate_kernel_ls, 1e-4)
    assert_allclose(gpr_kernel_var, approximate_kernel_var, 1e-3)

    gpr_mu, gpr_var = gpr_model.predict_y(Datum.Xtest)
    approximate_mu, approximate_var = approximate_model.predict_y(Datum.Xtest)

    assert_allclose(gpr_mu, approximate_mu, 1e-3)
    assert_allclose(gpr_var, approximate_var, 1e-4)


def test_equivalence_vgp_and_svgp():
    kernel = gpflow.kernels.Matern52()
    likelihood = gpflow.likelihoods.StudentT()

    svgp_model = _create_svgp_model(kernel, likelihood, DatumVGP.q_mu, DatumVGP.q_sqrt, whiten=True)
    vgp_model = _create_vgp_model(kernel, likelihood, DatumVGP.q_mu, DatumVGP.q_sqrt)

    likelihood_svgp = svgp_model.elbo(DatumVGP.data)
    likelihood_vgp = vgp_model.elbo()
    assert_allclose(likelihood_svgp, likelihood_vgp, rtol=1e-2)

    svgp_mu, svgp_var = svgp_model.predict_f(DatumVGP.Xs)
    vgp_mu, vgp_var = vgp_model.predict_f(DatumVGP.Xs)

    assert_allclose(svgp_mu, vgp_mu)
    assert_allclose(svgp_var, vgp_var)


def test_equivalence_vgp_and_opper_archambeau():
    kernel = gpflow.kernels.Matern52()
    likelihood = gpflow.likelihoods.StudentT()

    vgp_oa_model = _create_vgpao_model(kernel, likelihood, DatumVGP.q_alpha, DatumVGP.q_lambda)

    K = kernel(DatumVGP.X) + np.eye(DatumVGP.N) * default_jitter()
    L = np.linalg.cholesky(K)
    L_inv = np.linalg.inv(L)
    K_inv = np.linalg.inv(K)

    mean = K @ DatumVGP.q_alpha

    prec_dnn = K_inv[None, :, :] + np.array([np.diag(l ** 2) for l in DatumVGP.q_lambda.T])
    var_dnn = np.linalg.inv(prec_dnn)

    svgp_model_unwhitened = _create_svgp_model(
        kernel, likelihood, mean, np.linalg.cholesky(var_dnn), whiten=False
    )

    mean_white_nd = L_inv.dot(mean)
    var_white_dnn = np.einsum("nN,dNM,mM->dnm", L_inv, var_dnn, L_inv)
    q_sqrt_nnd = np.linalg.cholesky(var_white_dnn)

    vgp_model = _create_vgp_model(kernel, likelihood, mean_white_nd, q_sqrt_nnd)

    likelihood_vgp = vgp_model.elbo()
    likelihood_vgp_oa = vgp_oa_model.elbo()
    likelihood_svgp_unwhitened = svgp_model_unwhitened.elbo(DatumVGP.data)

    assert_allclose(likelihood_vgp, likelihood_vgp_oa, rtol=1e-2)
    assert_allclose(likelihood_vgp, likelihood_svgp_unwhitened, rtol=1e-2)

    vgp_oa_mu, vgp_oa_var = vgp_oa_model.predict_f(DatumVGP.Xs)
    svgp_unwhitened_mu, svgp_unwhitened_var = svgp_model_unwhitened.predict_f(DatumVGP.Xs)
    vgp_mu, vgp_var = vgp_model.predict_f(DatumVGP.Xs)

    assert_allclose(vgp_oa_mu, vgp_mu)
    assert_allclose(vgp_oa_var, vgp_var, rtol=1e-4)  # jitter?
    assert_allclose(svgp_unwhitened_mu, vgp_mu)
    assert_allclose(svgp_unwhitened_var, vgp_var, rtol=1e-4)


class DatumUpper:
    rng = np.random.default_rng(123)
    X = rng.random((100, 1))
    Y = np.sin(1.5 * 2 * np.pi * X) + rng.standard_normal(X.shape) * 0.1 + 5.3
    assert Y.mean() > 5.0, "offset ensures a regression test against the bug fixed by PR #1560"
    data = (X, Y)


def test_upper_bound_few_inducing_points():
    """
    Test for upper bound for regression marginal likelihood
    """
    model_vfe = gpflow.models.SGPR(
        (DatumUpper.X, DatumUpper.Y),
        gpflow.kernels.SquaredExponential(),
        inducing_variable=DatumUpper.X[:10, :].copy(),
        mean_function=Constant(),
    )
    opt = gpflow.optimizers.Scipy()

    opt.minimize(
        model_vfe.training_loss, variables=model_vfe.trainable_variables, options=dict(maxiter=500),
    )

    full_gp = gpflow.models.GPR(
        (DatumUpper.X, DatumUpper.Y),
        kernel=gpflow.kernels.SquaredExponential(),
        mean_function=Constant(),
    )
    full_gp.kernel.lengthscales.assign(model_vfe.kernel.lengthscales)
    full_gp.kernel.variance.assign(model_vfe.kernel.variance)
    full_gp.likelihood.variance.assign(model_vfe.likelihood.variance)
    full_gp.mean_function.c.assign(model_vfe.mean_function.c)

    lml_upper = model_vfe.upper_bound()
    lml_vfe = model_vfe.elbo()
    lml_full_gp = full_gp.log_marginal_likelihood()

    assert lml_vfe < lml_full_gp
    assert lml_full_gp < lml_upper
back to top