Revision adae52b94e18afa1f84fab67df2a8a872c2f5533 authored by Miao Xie on 31 March 2011, 09:43:23 UTC, committed by Chris Mason on 05 April 2011, 05:19:43 UTC
the object id of the space cache inode's key is allocated from the relative
root, just like the regular file. So we can't identify space cache inode by
checking the object id of the inode's key, and we have to clear __GFP_FS flag
at the time we look up the space cache inode.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Liu Bo <liubo2009@cn.fujitsu.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
1 parent 6e8df2a
Raw File
syscall.c
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <asm/syscall.h>

static int collect_syscall(struct task_struct *target, long *callno,
			   unsigned long args[6], unsigned int maxargs,
			   unsigned long *sp, unsigned long *pc)
{
	struct pt_regs *regs = task_pt_regs(target);
	if (unlikely(!regs))
		return -EAGAIN;

	*sp = user_stack_pointer(regs);
	*pc = instruction_pointer(regs);

	*callno = syscall_get_nr(target, regs);
	if (*callno != -1L && maxargs > 0)
		syscall_get_arguments(target, regs, 0, maxargs, args);

	return 0;
}

/**
 * task_current_syscall - Discover what a blocked task is doing.
 * @target:		thread to examine
 * @callno:		filled with system call number or -1
 * @args:		filled with @maxargs system call arguments
 * @maxargs:		number of elements in @args to fill
 * @sp:			filled with user stack pointer
 * @pc:			filled with user PC
 *
 * If @target is blocked in a system call, returns zero with *@callno
 * set to the the call's number and @args filled in with its arguments.
 * Registers not used for system call arguments may not be available and
 * it is not kosher to use &struct user_regset calls while the system
 * call is still in progress.  Note we may get this result if @target
 * has finished its system call but not yet returned to user mode, such
 * as when it's stopped for signal handling or syscall exit tracing.
 *
 * If @target is blocked in the kernel during a fault or exception,
 * returns zero with *@callno set to -1 and does not fill in @args.
 * If so, it's now safe to examine @target using &struct user_regset
 * get() calls as long as we're sure @target won't return to user mode.
 *
 * Returns -%EAGAIN if @target does not remain blocked.
 *
 * Returns -%EINVAL if @maxargs is too large (maximum is six).
 */
int task_current_syscall(struct task_struct *target, long *callno,
			 unsigned long args[6], unsigned int maxargs,
			 unsigned long *sp, unsigned long *pc)
{
	long state;
	unsigned long ncsw;

	if (unlikely(maxargs > 6))
		return -EINVAL;

	if (target == current)
		return collect_syscall(target, callno, args, maxargs, sp, pc);

	state = target->state;
	if (unlikely(!state))
		return -EAGAIN;

	ncsw = wait_task_inactive(target, state);
	if (unlikely(!ncsw) ||
	    unlikely(collect_syscall(target, callno, args, maxargs, sp, pc)) ||
	    unlikely(wait_task_inactive(target, state) != ncsw))
		return -EAGAIN;

	return 0;
}
EXPORT_SYMBOL_GPL(task_current_syscall);
back to top