Revision b08f3062c96677de266af26767634fd7c6e6611d authored by Alexander G. de G. Matthews on 09 September 2016, 10:59:46 UTC, committed by James Hensman on 09 September 2016, 10:59:46 UTC
* Renaming tf_hacks to tf_wraps * Changing tf_hacks to tf_wraps in code. * adding a tf_hacks file that raises deprecationwarnings * release notes * bumpng version on docs * importing tf_hacks, tf_wraps
1 parent 61b0659
param.py
# Copyright 2016 James Hensman, Mark van der Wilk, Valentine Svensson, alexggmatthews, PabloLeon, fujiisoup
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import numpy as np
import pandas as pd
import tensorflow as tf
from . import transforms
from contextlib import contextmanager
from functools import wraps
from .scoping import NameScoped
# when one of these attributes is set, notify a recompilation
recompile_keys = ['prior', 'transform', 'fixed']
class Parentable(object):
"""
A very simple class for objects in a tree, where each node contains a
reference to '_parent'.
This class can figure out its own name (by seeing what it's called by the
_parent's __dict__) and also recurse up to the highest_parent.
"""
def __init__(self):
self._parent = None
@property
def highest_parent(self):
"""A reference to the top of the tree, usually a Model instance"""
if self._parent is None:
return self
else:
return self._parent.highest_parent
@property
def name(self):
"""An automatically generated name, given by the reference of the _parent to this instance"""
if self._parent is None:
return 'unnamed'
if isinstance(self._parent, ParamList):
return 'item%i' % self._parent._list.index(self)
matches = [key for key, value in self._parent.__dict__.items()
if value is self]
if len(matches) == 0:
raise ValueError("mis-specified parent. This Param's\
_parent does not contain a reference to it.")
if len(matches) > 1:
raise ValueError("This Param appears to be doubly\
referenced by a parent")
return matches[0]
@property
def long_name(self):
"""
This is a unique identifier for a param object within a structure, made
by concatenating the names through the tree.
"""
if self._parent is None:
return self.name
return self._parent.long_name + '.' + self.name
def __getstate__(self):
d = self.__dict__.copy()
d.pop('_parent')
return d
def __setstate__(self, d):
self.__dict__.update(d)
self._parent = None
class Param(Parentable):
"""
An object to represent parameters.
**Getting and setting values**
The current value of the parameter is stored in self._array as a
numpy.ndarray. Changing the value of the Param is as simple as assignment
(once the Param is part of a model). Example:
>>> m = GPflow.model.Model()
>>> m.p = GPflow.param.Param(1.0)
>>> print(m)
model.p transform:(none) prior:None
[ 1.]
>>> m.p = 3.2
>>> print(m)
model.p transform:(none) prior:None
[ 3.2]
To retrieve the value of the parameter, we use the 'value' property:
>>> m.p.value
array([ 3.2])
**Unconstrained optimization**
The parameter can be transformed to a 'free state' where it
can be optimized. The methods
>>> self.get_free_state
>>> self.set_state
transform between self.value and the free state.
To apply a transform to the Param, simply set the transform attribute
with a GPflow.transforms object
>>> m = GPflow.model.Model()
>>> m.p = GPflow.param.Param(1.0)
>>> print(m)
model.p transform:(none) prior:None
[ 1.]
>>> m.p.transform = GPflow.transforms.Exp()
>>> print(m)
model.p transform:+ve prior:None
[ 1.]
**Fixes**
There is a self.fixed flag, in which case the parameter does not get
optimized. To enable this, during make_tf_array, a fixed parameter will be
ignored, and a placeholder returned via get_feed_dict instead.
Fixes and transforms can be used together, in the sense that fixes take
priority over transforms, so unfixing a parameter is as simple as setting
the flag. Example:
>>> p = Param(1.0, transform=GPflow.transforms.positive)
>>> m = GPflow.model.Model()
>>> m.p = p # the model has a single parameter, constrained to be +ve
>>> m.p.fixed = True # the model now has no free parameters
>>> m.p.fixed = False # the model has a single parameter, constrained +ve
Note that if self.fixed flag is assigned, recompilation of the model is
necessary. Otherwise, the change in the fixed parameter values does not
require recompilation.
**Compiling into tensorflow**
The method
>>> self.make_tf_array
constructs a tensorflow representation of the parameter, from a tensorflow
vector representing the free state. In this case, the parameter is
represented as part of the 'free-state' vector associated with a model.
However, if the parameters is fixed, then a placeholder is returned during
a call to get_feed_dict, and the parameter is represented that way instead.
**Priors and transforms**
The `self.prior` object is used to place priors on parameters, and the
`self.transform` object is used to enable unconstrained optimization and
MCMC.
"""
def __init__(self, array, transform=transforms.Identity()):
Parentable.__init__(self)
self._array = np.asarray(np.atleast_1d(array), dtype=np.float64)
self.transform = transform
self._tf_array = None
self._log_jacobian = None
self.prior = None
self.fixed = False
@property
def value(self):
return self._array.copy()
def get_parameter_dict(self, d):
d[self.long_name] = self.value
def set_parameter_dict(self, d):
self._array[...] = d[self.long_name]
def get_samples_df(self, samples):
"""
Given a numpy array where each row is a valid free-state vector, return
a pandas.DataFrame which contains the parameter name and associated samples
in the correct form (e.g. with positive constraints applied).
"""
if self.fixed:
return pd.Series([self.value for _ in range(samples.shape[0])], name=self.long_name)
start, _ = self.highest_parent.get_param_index(self)
end = start + self.size
samples = samples[:, start:end]
samples = samples.reshape((samples.shape[0],) + self.shape)
samples = self.transform.forward(samples)
return pd.Series([v for v in samples], name=self.long_name)
def make_tf_array(self, free_array):
"""
free_array is a tensorflow vector which will be the optimisation
target, i.e. it will be free to take any value.
Here we take that array, and transform and reshape it so that it can be
used to represent this parameter
Then we return the number of elements that we've used to construct the
array, so that it can be sliced for the next Param.
"""
if self.fixed:
# fixed parameters are treated by tf.placeholder
return 0
free_size = self.transform.free_state_size(self.shape)
x_free = free_array[:free_size]
mapped_array = self.transform.tf_forward(x_free)
self._tf_array = tf.reshape(mapped_array, self.shape)
self._log_jacobian = self.transform.tf_log_jacobian(x_free)
return free_size
def get_free_state(self):
"""
Take the current state of this variable, as stored in self.value, and
transform it to the 'free' state.
This is a numpy method.
"""
if self.fixed:
return np.empty((0,))
return self.transform.backward(self.value.flatten())
def get_feed_dict(self):
"""
Return a dictionary matching up any fixed-placeholders to their values
"""
d = {}
if self.fixed:
d[self._tf_array] = self.value
return d
def set_state(self, x):
"""
Given a vector x representing the 'free' state of this Param, transform
it 'forwards' and store the result in self._array. The values in
self._array can be accessed using self.value
This is a numpy method.
"""
if self.fixed:
return 0
free_size = self.transform.free_state_size(self.shape)
new_array = self.transform.forward(x[:free_size]).reshape(self.shape)
assert new_array.shape == self.shape
self._array[...] = new_array
return free_size
def build_prior(self):
"""
Build a tensorflow representation of the prior density.
The log Jacobian is included.
"""
if self.prior is None:
return tf.constant(0.0, tf.float64)
elif self._tf_array is None: # pragma: no cover
raise ValueError("tensorflow array has not been initialized")
else:
return self.prior.logp(self._tf_array) + self._log_jacobian
def __setattr__(self, key, value):
"""
When some attributes are set, we need to recompile the tf model before
evaluation.
"""
object.__setattr__(self, key, value)
if key in recompile_keys:
self.highest_parent._needs_recompile = True
# when setting the fixed attribute, make or remove a placeholder appropraitely
if key == 'fixed':
if value:
self._tf_array = tf.placeholder(dtype=tf.float64,
shape=self._array.shape,
name=self.name)
else:
self._tf_array = None
def __str__(self, prepend=''):
return prepend + \
'\033[1m' + self.name + '\033[0m' + \
' transform:' + str(self.transform) + \
' prior:' + str(self.prior) + \
(' [FIXED]' if self.fixed else '') + \
'\n' + str(self.value)
@property
def size(self):
"""The size of this parameter, equivalent to self.value.size"""
return self._array.size
@property
def shape(self):
"""The shape of this parameter, equivalent to self.value.shape"""
return self._array.shape
def _html_table_rows(self, name_prefix=''):
"""
Construct a row of an html table, to be used in the jupyter notebook.
"""
html = "<tr>"
html += "<td>{0}</td>".format(name_prefix + self.name)
html += "<td>{0}</td>".format(str(self._array).replace('\n', '</br>'))
html += "<td>{0}</td>".format(str(self.prior))
html += "<td>{0}</td>".format('[FIXED]' if self.fixed
else str(self.transform))
html += "</tr>"
return html
def __getstate__(self):
d = Parentable.__getstate__(self)
d.pop('_tf_array')
d.pop('_log_jacobian')
return d
def __setstate__(self, d):
Parentable.__setstate__(self, d)
self._log_jacobian = None
self.fixed = self.fixed # make self._tf_array if the parameter is fixed
# NB the parent property will be set by the parent object, apart from
# for the top level, where it muct be None
# the tf_array and _log jacobian will be replaced when the model is recompiled
class DataHolder(Parentable):
"""
An object to represent data which needs to be passed to tensorflow for computation.
This behaves in much the same way as a Param (above), but is always
'fixed'. On a call to get_feed_dict, a placeholder-numpy pair is returned.
Getting and setting values
--
To get at the values of the data, use the value property:
>>> m = GPflow.model.Model()
>>> m.x = GPflow.param.DataHolder(np.array([ 0., 1.]))
>>> print(m.x.value)
[[ 0.], [ 1.]]
Changing the value of the data is as simple as assignment
(once the data is part of a model):
>>> m.x = np.array([ 0., 2.])
>>> print(m.x.value)
[[ 0.], [ 2.]]
"""
def __init__(self, array, on_shape_change='raise'):
"""
array is a numpy array of data.
on_shape_change is one of ('raise', 'pass', 'recompile'), and
determines the behaviour when the data is set to a new value with a
different shape
"""
Parentable.__init__(self)
self._array = array
self._tf_array = tf.placeholder(dtype=self._array.dtype,
shape=[None]*self._array.ndim,
name=self.name)
assert on_shape_change in ['raise', 'pass', 'recompile']
self.on_shape_change = on_shape_change
def get_feed_dict(self):
return {self._tf_array: self._array}
def __getstate__(self):
d = Parentable.__getstate__(self)
d.pop('_tf_array')
return d
def __setstate__(self, d):
Parentable.__setstate__(self, d)
self._tf_array = tf.placeholder(dtype=self._array.dtype,
shape=[None]*self._array.ndim,
name=self.name)
def set_data(self, array):
"""
Setting a data into self._array before any TensorFlow execution.
If the shape of the data changes, then either:
- raise an exception
- raise the recompilation flag.
- do nothing
according to the option in self.on_shape_change.
"""
if self.shape == array.shape:
self._array[...] = array # just accept the new values
else:
if self.on_shape_change == 'raise':
raise ValueError("The shape of this data must not change. \
(perhaps make the model again from scratch?)")
elif self.on_shape_change == 'recompile':
self._array = array.copy()
self.highest_parent._needs_recompile = True
elif self.on_shape_change == 'pass':
self._array = array.copy()
else:
raise ValueError('invalid option') # pragma: no cover
@property
def value(self):
return self._array.copy()
@property
def size(self):
return self._array.size
@property
def shape(self):
return self._array.shape
def __str__(self, prepend='Data:'):
return prepend + \
'\033[1m' + self.name + '\033[0m' + \
'\n' + str(self.value)
class AutoFlow:
"""
This decorator-class is designed for use on methods of the Parameterized class
(below).
The idea is that methods that compute relevant quantities (such as
predictions) can define a tf graph which we automatically run when the
(decorated) function is called.
The syntax looks like:
>>> class MyClass(Parameterized):
>>>
>>> @AutoFlow((tf.float64), (tf.float64))
>>> def my_method(self, x, y):
>>> #compute something, returning a tf graph.
>>> return tf.foo(self.baz, x, y)
>>> m = MyClass()
>>> x = np.random.randn(3,1)
>>> y = np.random.randn(3,1)
>>> result = my_method(x, y)
Now the output of the method call is the _result_ of the computation,
equivalent to
>>> m = MyModel()
>>> x = np.random.randn(3,1)
>>> y = np.random.randn(3,1)
>>> x_tf = tf.placeholder(tf.float64)
>>> y_tf = tf.placeholder(tf.float64)
>>> with m.tf_mode():
>>> graph = tf.foo(m.baz, x_tf, y_tf)
>>> result = m._session.run(graph,
feed_dict={x_tf:x,
y_tf:y,
m._free_vars:m.get_free_state()})
Not only is the syntax cleaner, but multiple calls to the method will
result in the graph being constructed only once.
"""
def __init__(self, *tf_arg_tuples):
# NB. TF arg_tuples is a list of tuples, each of which can be used to
# construct a tf placeholder.
self.tf_arg_tuples = tf_arg_tuples
def __call__(self, tf_method):
@wraps(tf_method)
def runnable(instance, *np_args):
storage_name = '_' + tf_method.__name__ + '_AF_storage'
if hasattr(instance, storage_name):
# the method has been compiled already, get things out of storage
storage = getattr(instance, storage_name)
else:
# the method needs to be compiled.
storage = {} # an empty dict to keep things in
setattr(instance, storage_name, storage)
storage['free_vars'] = tf.placeholder(tf.float64, [None])
instance.make_tf_array(storage['free_vars'])
storage['tf_args'] = [tf.placeholder(*a) for a in self.tf_arg_tuples]
with instance.tf_mode():
storage['tf_result'] = tf_method(instance, *storage['tf_args'])
storage['session'] = tf.Session()
storage['session'].run(tf.initialize_all_variables(), feed_dict=instance.get_feed_dict())
feed_dict = dict(zip(storage['tf_args'], np_args))
feed_dict[storage['free_vars']] = instance.get_free_state()
feed_dict.update(instance.get_feed_dict())
return storage['session'].run(storage['tf_result'], feed_dict=feed_dict)
return runnable
class Parameterized(Parentable):
"""
An object to contain parameters and data.
This object is designed to be part of a tree, with Param and DataHolder
objects at the leaves. We can then recurse down the tree to find all the
parameters and data (leaves), or recurse up the tree (using highest_parent)
from the leaves to the root.
A useful application of such a recursion is 'tf_mode', where the parameters
appear as their _tf_array variables. This allows us to build models on
those parameters. During _tf_mode, the __getattribute__ method is
overwritten to return tf arrays in place of parameters (and data).
Another recursive function is build_prior which sums the log-prior from all
of the tree's parameters (whilst in tf_mode!).
*Scoping*
Parameterized classes can define functions that operate on tf variables. To
wrap those functions in tensorflow scopes, the names of the scoped
fucntions are stored in self.scoped_keys (a list of strings). Those
functions are then called inside a tensorflow scope.
"""
def __init__(self):
Parentable.__init__(self)
self.scoped_keys = []
self._tf_mode = False
def get_parameter_dict(self, d=None):
if d is None:
d = {}
for p in self.sorted_params:
p.get_parameter_dict(d)
return d
def set_parameter_dict(self, d):
for p in self.sorted_params:
p.set_parameter_dict(d)
def get_samples_df(self, samples):
"""
Given a numpy array where each row is a valid free-state vector, return
a pandas.DataFrame which contains the parameter name and associated samples
in the correct form (e.g. with positive constraints applied).
"""
d = pd.DataFrame()
for p in self.sorted_params:
d = pd.concat([d, p.get_samples_df(samples)], axis=1)
return d
def __getattribute__(self, key):
"""
Here, we overwrite the getattribute method.
If tf mode is off, this does nothing.
If tf mode is on, all child parameters will appear as their tf
representations, and all functions that are designated in 'scoped_keys'
will have aname scope applied.
"""
o = object.__getattribute__(self, key)
# if _tf_mode is False, or there is no _tf_mode, just return the object as normal.
try:
if not object.__getattribute__(self, '_tf_mode'):
return o
except AttributeError:
return o
# In tf_mode, if the object is a Param/Dataholder, ise the tf_array
if isinstance(o, (Param, DataHolder)):
return o._tf_array
# in tf_mode, wrap functions is a scope
elif key in object.__getattribute__(self, 'scoped_keys'):
return NameScoped(self.long_name + '.' + key)(o)
# finally, just return the object
return o
def __setattr__(self, key, value):
"""
When a value is assigned to a Param, put that value in the
Param's array (rather than just overwriting that Param with the
new value). i.e. this
>>> p = Parameterized()
>>> p.p = Param(1.0)
>>> p.p = 2.0
should be equivalent to this
>>> p = Parameterized()
>>> p.p = Param(1.0)
>>> p.p._array[...] = 2.0
Additionally, when Param or Parameterized objects are added, let them
know that this node is the _parent
"""
# If we already have an atribute with that key, decide what to do:
if key in self.__dict__.keys():
p = getattr(self, key)
# if the existing attribute is a parameter, and the value is an
# array (or float, int), then set the _array of that parameter
if isinstance(p, Param) and isinstance(value, (np.ndarray, float, int)):
p._array[...] = value
return # don't call object.setattr or set the _parent value
# if the existing attribute is a Param (or Parameterized), and the
# new attribute is too, replace the attribute and set the model to
# recompile if necessary.
if isinstance(p, Param) and isinstance(value, (Param, Parameterized)):
p._parent = None # unlink the old Parameter from this tree
if hasattr(self.highest_parent, '_needs_recompile'):
self.highest_parent._needs_recompile = True
# if the existing atribute is a DataHolder, set the value of the data inside
if isinstance(p, DataHolder) and isinstance(value, np.ndarray):
p.set_data(value)
return # don't call object.setattr or set the _parent value
# use the standard setattr
object.__setattr__(self, key, value)
# make sure a new child node knows this is the _parent:
if isinstance(value, Parentable) and key is not '_parent':
value._parent = self
if key == '_needs_recompile':
self._kill_autoflow()
def _kill_autoflow(self):
"""
Remove all compiled AutoFlow methods recursively.
If AutoFlow functions become invalid, because recompilation is
required, this function recurses the structure removing all AutoFlow
dicts. Subsequent calls to to those functions will casue AutoFlow to regenerate.
"""
for key in list(self.__dict__.keys()):
if key[0] == '_' and key[-11:] == '_AF_storage':
delattr(self, key)
[p._kill_autoflow() for p in self.sorted_params if isinstance(p, Parameterized)]
def __getstate__(self):
d = Parentable.__getstate__(self)
# do not pickle autoflow
for key in list(d.keys()):
if key[0] == '_' and key[-11:] == '_AF_storage':
d.pop(key)
return d
def make_tf_array(self, X):
"""
Distribute a flat tensorflow array amongst all the child parameter of this instance.
X is a tensorflow placeholder. It gets passed to all the children of
this class (that are Parameterized or Param objects), which then
construct their tf_array variables from consecutive sections.
"""
count = 0
for p in self.sorted_params:
count += p.make_tf_array(X[count:])
return count
def get_param_index(self, param_to_index):
"""
Given a parameter, compute the position of that parameter on the free-state vector.
This returns:
- count: an integer representing the position
- found: a bool representing whether the parameter was found.
"""
found = False
count = 0
for p in self.sorted_params:
if isinstance(p, Param):
if p is param_to_index:
found = True
break
else:
count += p.get_free_state().size
elif isinstance(p, Parameterized):
extra, found = p.get_param_index(param_to_index)
count += extra
if found:
break
return count, found
@property
def sorted_params(self):
"""
Return a list of all the child parameters, sorted by id.
This makes sure they're always in the same order.
"""
params = [child for key, child in self.__dict__.items()
if isinstance(child, (Param, Parameterized))
and key is not '_parent']
return sorted(params, key=id)
@property
def data_holders(self):
"""
Return a list of all the child DataHolders
"""
return [child for key, child in self.__dict__.items()
if isinstance(child, DataHolder)]
@property
def fixed(self):
"""A boolean attribute to determine if all the child parameters of this node are fixed"""
return all(p.fixed for p in self.sorted_params)
@fixed.setter
def fixed(self, val):
for p in self.sorted_params:
p.fixed = val
def get_free_state(self):
"""
Recurse get_free_state on all child parameters, and hstack them.
"""
# Here, additional empty array allows hstacking of empty list
return np.hstack([p.get_free_state() for p in self.sorted_params]
+ [np.empty(0)])
def get_feed_dict(self):
"""
Recursively fetch a dictionary matching up fixed-placeholders to associated values
"""
d = {}
for p in self.sorted_params + self.data_holders:
d.update(p.get_feed_dict())
return d
def set_state(self, x):
"""
Set the values of all the parameters by recursion
"""
count = 0
for p in self.sorted_params:
count += p.set_state(x[count:])
return count
@contextmanager
def tf_mode(self):
"""
A context for building models.
Correct usage is:
with m.tf_mode:
# do tf stuff, like
m.build_likelihood()
m.build_prior()
with this context engaged, any Param objects which are children of this
class will appear as their tf-variables. Example
>>> m = Parameterized()
>>> m.foo = Param(1.0)
>>> m.make_tf_array(tt.dvector())
>>> print m.foo
foo
[ 1.]
>>> with m.tf_mode():
>>> print m.foo
Reshape{1}.0
The idea is that in tf_mode, we can easily get references to the
tf representation of parameters in order to construct tf
objective functions.
"""
self._begin_tf_mode()
yield
self._end_tf_mode()
def _begin_tf_mode(self):
[child._begin_tf_mode() for child in self.sorted_params
if isinstance(child, Parameterized)]
self._tf_mode = True
def _end_tf_mode(self):
[child._end_tf_mode() for child in self.sorted_params
if isinstance(child, Parameterized)]
self._tf_mode = False
def build_prior(self):
"""
Build a tf expression for the prior by summing all child-parameter priors.
"""
return sum([p.build_prior() for p in self.sorted_params])
def __str__(self, prepend=''):
prepend += self.name + '.'
return '\n'.join([p.__str__(prepend) for p in self.sorted_params])
def _html_table_rows(self, name_prefix=''):
"""
Get the rows of the html table for this object
"""
name_prefix += self.name + '.'
return ''.join([p._html_table_rows(name_prefix)
for p in self.sorted_params])
def _repr_html_(self):
"""
Build a small html table for display in the jupyter notebook.
"""
html = ["<table id='params' width=100%>"]
# build the header
header = "<tr>"
header += "<td>Name</td>"
header += "<td>values</td>"
header += "<td>prior</td>"
header += "<td>constraint</td>"
header += "</tr>"
html.append(header)
html.append(self._html_table_rows())
html.append("</table>")
return ''.join(html)
def __setstate__(self, d):
Parentable.__setstate__(self, d)
# reinstate _parent graph
for p in self.sorted_params + self.data_holders:
p._parent = self
class ParamList(Parameterized):
"""
A list of parameters. This allows us to store parameters in a list whilst making them 'visible' to the GPflow machinery.
The correct usage is
>>> my_list = GPflow.param.ParamList([Param1, Param2])
You can then iterate through the list. For example, to compute the sum:
>>> my_sum = reduce(tf.add, my_list)
or the sum of the squares:
>>> rmse = tf.sqrt(reduce(tf.add, map(tf.square, my_list)))
You can append things:
>>> my_list.append(GPflow.kernels.RBF(1))
but only if the are Parameters (or Parameterized objects). You can set the
value of Parameters in the list:
>>> my_list = GPflow.param.ParamList([GPflow.param.Param(2)])
>>> print my_list
unnamed.item0 transform:(none) prior:None
[ 2.]
>>> my_list[0] = 12
>>> print my_list
unnamed.item0 transform:(none) prior:None
[ 12.]
But you can't change elements of the list by assignment:
>>> my_list = GPflow.param.ParamList([GPflow.param.Param(2)])
>>> new_param = GPflow.param.Param(4)
>>> my_list[0] = new_param # raises exception
"""
def __init__(self, list_of_params=[]):
Parameterized.__init__(self)
for item in list_of_params:
assert isinstance(item, (Param, Parameterized))
item._parent = self
self._list = list_of_params
@property
def sorted_params(self):
return self._list
def __getitem__(self, key):
"""
If tf mode is off, this simply returns the corresponding Param .
If tf mode is on, all items will appear as their tf
representations.
"""
o = self.sorted_params[key]
if isinstance(o, Param) and self._tf_mode:
return o._tf_array
return o
def append(self, item):
assert isinstance(item, (Param, Parameterized)), \
"this object is for containing parameters"
item._parent = self
self.sorted_params.append(item)
def __setitem__(self, key, value):
"""
It's not possible to assign to things in the list, but it is possible
to set their values by assignment.
"""
self.sorted_params[key]._array[...] = value

Computing file changes ...