Revision b55b2f45d04d95010cd1a40f2701990abe43c3de authored by Peter Dillinger on 05 September 2019, 21:57:39 UTC, committed by Facebook Github Bot on 05 September 2019, 21:59:25 UTC
Summary:
Since DynamicBloom is now only used in-memory, we're free to
change it without schema compatibility issues. The new implementation
is drawn from (with manifest permission)
https://github.com/pdillinger/wormhashing/blob/303542a767437f56d8b66cea6ebecaac0e6a61e9/bloom_simulation_tests/foo.cc#L613

This has several speed advantages over the prior implementation:
* Uses fastrange instead of %
* Minimum logic to determine first (and all) probed memory addresses
* (Major) Two probes per 64-bit memory fetch/write.
* Very fast and effective (murmur-like) hash expansion/re-mixing. (At
least on recent CPUs, integer multiplication is very cheap.)

While a Bloom filter with 512-bit cache locality has about a 1.15x FP
rate penalty (e.g. 0.84% to 0.97%), further restricting to two probes
per 64 bits incurs an additional 1.12x FP rate penalty (e.g. 0.97% to
1.09%). Nevertheless, the unit tests show no "mediocre" FP rate samples,
unlike the old implementation with more erratic FP rates.

Especially for the memtable, we expect speed to outweigh somewhat higher
FP rates. For example, a negative table query would have to be 1000x
slower than a BF query to justify doubling BF query time to shave 10% off
FP rate (working assumption around 1% FP rate). While that seems likely
for SSTs, my data suggests a speed factor of roughly 50x for the memtable
(vs. BF; ~1.5% lower write throughput when enabling memtable Bloom
filter, after this change).  Thus, it's probably not worth even 5% more
time in the Bloom filter to shave off 1/10th of the Bloom FP rate, or 0.1%
in absolute terms, and it's probably at least 20% slower to recoup that
much FP rate from this new implementation. Because of this, we do not see
a need for a 'locality' option that affects the MemTable Bloom filter
and have decoupled the MemTable Bloom filter from Options::bloom_locality.

Note that just 3% more memory to the Bloom filter (10.3 bits per key vs.
just 10) is able to make up for the ~12% FP rate drop in the new
implementation:

[] # Nearly "ideal" FP-wise but reasonably fast cache-local implementation
[~/wormhashing/bloom_simulation_tests] ./foo_gcc_IMPL_CACHE_WORM64_FROM32_any.out 10000000 6 10 $RANDOM 100000000
./foo_gcc_IMPL_CACHE_WORM64_FROM32_any.out time: 3.29372 sampled_fp_rate: 0.00985956 ...

[] # Close match to this new implementation
[~/wormhashing/bloom_simulation_tests] ./foo_gcc_IMPL_CACHE_MUL64_BLOCK_FROM32_any.out 10000000 6 10.3 $RANDOM 100000000
./foo_gcc_IMPL_CACHE_MUL64_BLOCK_FROM32_any.out time: 2.10072 sampled_fp_rate: 0.00985655 ...

[] # Old locality=1 implementation
[~/wormhashing/bloom_simulation_tests] ./foo_gcc_IMPL_CACHE_ROCKSDB_DYNAMIC_any.out 10000000 6 10 $RANDOM 100000000
./foo_gcc_IMPL_CACHE_ROCKSDB_DYNAMIC_any.out time: 3.95472 sampled_fp_rate: 0.00988943 ...

Also note the dramatic speed improvement vs. alternatives.

--

Performance unit test: DynamicBloomTest.concurrent_with_perf is updated
to report more precise timing data. (Measure running time of each
thread, not just longest running thread, etc.) Results averaged over
various sizes enabled with --enable_perf and 20 runs each; old dynamic
bloom refers to locality=1, the faster of the old:

old dynamic bloom, avg add latency = 65.6468
new dynamic bloom, avg add latency = 44.3809
old dynamic bloom, avg query latency = 50.6485
new dynamic bloom, avg query latency = 43.2186
old avg parallel add latency = 41.678
new avg parallel add latency = 24.5238
old avg parallel hit latency = 14.6322
new avg parallel hit latency = 12.3939
old avg parallel miss latency = 16.7289
new avg parallel miss latency = 12.2134

Tested on a dedicated 64-bit production machine at Facebook. Significant
improvement all around.

Despite now using std::atomic<uint64_t>, quick before-and-after test on
a 32-bit machine (Intel Atom N270, released 2008) shows no regression in
performance, in some cases modest improvement.

--

Performance integration test (synthetic): with DEBUG_LEVEL=0, used
TEST_TMPDIR=/dev/shm ./db_bench --benchmarks=fillrandom,readmissing,readrandom,stats --num=2000000
and optionally with -memtable_whole_key_filtering -memtable_bloom_size_ratio=0.01
300 runs each configuration.

Write throughput change by enabling memtable bloom:
Old locality=0: -3.06%
Old locality=1: -2.37%
New:            -1.50%
conclusion -> seems to substantially close the gap

Readmissing throughput change by enabling memtable bloom:
Old locality=0: +34.47%
Old locality=1: +34.80%
New:            +33.25%
conclusion -> maybe a small new penalty from FP rate

Readrandom throughput change by enabling memtable bloom:
Old locality=0: +31.54%
Old locality=1: +31.13%
New:            +30.60%
conclusion -> maybe also from FP rate (after memtable flush)

--

Another conclusion we can draw from this new implementation is that the
existing 32-bit hash function is not inherently crippling the Bloom
filter speed or accuracy, below about 5 million keys. For speed, the
implementation is essentially the same whether starting with 32-bits or
64-bits of hash; it just determines whether the first multiplication
after fastrange is a pseudorandom expansion or needed re-mix. Note that
this multiplication can occur while memory is fetching.

For accuracy, in a standard configuration, you need about 5 million
keys before you have about a 1.1x FP penalty due to using a
32-bit hash vs. 64-bit:

[~/wormhashing/bloom_simulation_tests] ./foo_gcc_IMPL_CACHE_MUL64_BLOCK_FROM32_any.out $((5 * 1000 * 1000 * 10)) 6 10 $RANDOM 100000000
./foo_gcc_IMPL_CACHE_MUL64_BLOCK_FROM32_any.out time: 2.52069 sampled_fp_rate: 0.0118267 ...
[~/wormhashing/bloom_simulation_tests] ./foo_gcc_IMPL_CACHE_MUL64_BLOCK_any.out $((5 * 1000 * 1000 * 10)) 6 10 $RANDOM 100000000
./foo_gcc_IMPL_CACHE_MUL64_BLOCK_any.out time: 2.43871 sampled_fp_rate: 0.0109059
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5762

Differential Revision: D17214194

Pulled By: pdillinger

fbshipit-source-id: ad9da031772e985fd6b62a0e1db8e81892520595
1 parent 19e8c9b
Raw File
DEFAULT_OPTIONS_HISTORY.md
# RocksDB default options change log
## Unreleased
* delayed_write_rate takes the rate given by rate_limiter if not specified.

## 5.2
* Change the default of delayed slowdown value to 16MB/s and further increase the L0 stop condition to 36 files.

## 5.0 (11/17/2016)
* Options::allow_concurrent_memtable_write and Options::enable_write_thread_adaptive_yield are now true by default
* Options.level0_stop_writes_trigger default value changes from 24 to 32.

## 4.8.0 (5/2/2016)
* options.max_open_files changes from 5000 to -1. It improves performance, but users need to set file descriptor limit to be large enough and watch memory usage for index and bloom filters.
* options.base_background_compactions changes from max_background_compactions to 1. When users set higher max_background_compactions but the write throughput is not high, the writes are less spiky to disks.
* options.wal_recovery_mode changes from kTolerateCorruptedTailRecords to kPointInTimeRecovery. Avoid some false positive when file system or hardware reorder the writes for file data and metadata.

## 4.7.0 (4/8/2016)
* options.write_buffer_size changes from 4MB to 64MB.
* options.target_file_size_base changes from 2MB to 64MB.
* options.max_bytes_for_level_base changes from 10MB to 256MB.
* options.soft_pending_compaction_bytes_limit changes from 0 (disabled) to 64GB.
* options.hard_pending_compaction_bytes_limit changes from 0 (disabled) to 256GB.
* table_cache_numshardbits changes from 4 to 6.
* max_file_opening_threads changes from 1 to 16.
back to top