https://github.com/torvalds/linux
Revision b5accbb0dfae36d8d36cd882096943c98d5ede15 authored by Jan Kara on 22 June 2017, 13:31:13 UTC, committed by Mike Marshall on 14 September 2017, 18:54:37 UTC
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.

Fix the problem by creating __orangefs_set_acl() function that does not
call posix_acl_update_mode() and use it when inheriting ACLs. That
prevents SGID bit clearing and the mode has been properly set by
posix_acl_create() anyway.

Fixes: 073931017b49d9458aa351605b43a7e34598caef
CC: stable@vger.kernel.org
CC: Mike Marshall <hubcap@omnibond.com>
CC: pvfs2-developers@beowulf-underground.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
1 parent 569dbb8
Raw File
Tip revision: b5accbb0dfae36d8d36cd882096943c98d5ede15 authored by Jan Kara on 22 June 2017, 13:31:13 UTC
orangefs: Don't clear SGID when inheriting ACLs
Tip revision: b5accbb
kexec.c
/*
 * kexec.c - kexec_load system call
 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/kexec.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/syscalls.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>

#include "kexec_internal.h"

static int copy_user_segment_list(struct kimage *image,
				  unsigned long nr_segments,
				  struct kexec_segment __user *segments)
{
	int ret;
	size_t segment_bytes;

	/* Read in the segments */
	image->nr_segments = nr_segments;
	segment_bytes = nr_segments * sizeof(*segments);
	ret = copy_from_user(image->segment, segments, segment_bytes);
	if (ret)
		ret = -EFAULT;

	return ret;
}

static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
			     unsigned long nr_segments,
			     struct kexec_segment __user *segments,
			     unsigned long flags)
{
	int ret;
	struct kimage *image;
	bool kexec_on_panic = flags & KEXEC_ON_CRASH;

	if (kexec_on_panic) {
		/* Verify we have a valid entry point */
		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
		    (entry > phys_to_boot_phys(crashk_res.end)))
			return -EADDRNOTAVAIL;
	}

	/* Allocate and initialize a controlling structure */
	image = do_kimage_alloc_init();
	if (!image)
		return -ENOMEM;

	image->start = entry;

	ret = copy_user_segment_list(image, nr_segments, segments);
	if (ret)
		goto out_free_image;

	if (kexec_on_panic) {
		/* Enable special crash kernel control page alloc policy. */
		image->control_page = crashk_res.start;
		image->type = KEXEC_TYPE_CRASH;
	}

	ret = sanity_check_segment_list(image);
	if (ret)
		goto out_free_image;

	/*
	 * Find a location for the control code buffer, and add it
	 * the vector of segments so that it's pages will also be
	 * counted as destination pages.
	 */
	ret = -ENOMEM;
	image->control_code_page = kimage_alloc_control_pages(image,
					   get_order(KEXEC_CONTROL_PAGE_SIZE));
	if (!image->control_code_page) {
		pr_err("Could not allocate control_code_buffer\n");
		goto out_free_image;
	}

	if (!kexec_on_panic) {
		image->swap_page = kimage_alloc_control_pages(image, 0);
		if (!image->swap_page) {
			pr_err("Could not allocate swap buffer\n");
			goto out_free_control_pages;
		}
	}

	*rimage = image;
	return 0;
out_free_control_pages:
	kimage_free_page_list(&image->control_pages);
out_free_image:
	kfree(image);
	return ret;
}

static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
		struct kexec_segment __user *segments, unsigned long flags)
{
	struct kimage **dest_image, *image;
	unsigned long i;
	int ret;

	if (flags & KEXEC_ON_CRASH) {
		dest_image = &kexec_crash_image;
		if (kexec_crash_image)
			arch_kexec_unprotect_crashkres();
	} else {
		dest_image = &kexec_image;
	}

	if (nr_segments == 0) {
		/* Uninstall image */
		kimage_free(xchg(dest_image, NULL));
		return 0;
	}
	if (flags & KEXEC_ON_CRASH) {
		/*
		 * Loading another kernel to switch to if this one
		 * crashes.  Free any current crash dump kernel before
		 * we corrupt it.
		 */
		kimage_free(xchg(&kexec_crash_image, NULL));
	}

	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
	if (ret)
		return ret;

	if (flags & KEXEC_PRESERVE_CONTEXT)
		image->preserve_context = 1;

	ret = machine_kexec_prepare(image);
	if (ret)
		goto out;

	/*
	 * Some architecture(like S390) may touch the crash memory before
	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
	 */
	ret = kimage_crash_copy_vmcoreinfo(image);
	if (ret)
		goto out;

	for (i = 0; i < nr_segments; i++) {
		ret = kimage_load_segment(image, &image->segment[i]);
		if (ret)
			goto out;
	}

	kimage_terminate(image);

	/* Install the new kernel and uninstall the old */
	image = xchg(dest_image, image);

out:
	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
		arch_kexec_protect_crashkres();

	kimage_free(image);
	return ret;
}

/*
 * Exec Kernel system call: for obvious reasons only root may call it.
 *
 * This call breaks up into three pieces.
 * - A generic part which loads the new kernel from the current
 *   address space, and very carefully places the data in the
 *   allocated pages.
 *
 * - A generic part that interacts with the kernel and tells all of
 *   the devices to shut down.  Preventing on-going dmas, and placing
 *   the devices in a consistent state so a later kernel can
 *   reinitialize them.
 *
 * - A machine specific part that includes the syscall number
 *   and then copies the image to it's final destination.  And
 *   jumps into the image at entry.
 *
 * kexec does not sync, or unmount filesystems so if you need
 * that to happen you need to do that yourself.
 */

SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
		struct kexec_segment __user *, segments, unsigned long, flags)
{
	int result;

	/* We only trust the superuser with rebooting the system. */
	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
		return -EPERM;

	/*
	 * Verify we have a legal set of flags
	 * This leaves us room for future extensions.
	 */
	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
		return -EINVAL;

	/* Verify we are on the appropriate architecture */
	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
		return -EINVAL;

	/* Put an artificial cap on the number
	 * of segments passed to kexec_load.
	 */
	if (nr_segments > KEXEC_SEGMENT_MAX)
		return -EINVAL;

	/* Because we write directly to the reserved memory
	 * region when loading crash kernels we need a mutex here to
	 * prevent multiple crash  kernels from attempting to load
	 * simultaneously, and to prevent a crash kernel from loading
	 * over the top of a in use crash kernel.
	 *
	 * KISS: always take the mutex.
	 */
	if (!mutex_trylock(&kexec_mutex))
		return -EBUSY;

	result = do_kexec_load(entry, nr_segments, segments, flags);

	mutex_unlock(&kexec_mutex);

	return result;
}

#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
		       compat_ulong_t, nr_segments,
		       struct compat_kexec_segment __user *, segments,
		       compat_ulong_t, flags)
{
	struct compat_kexec_segment in;
	struct kexec_segment out, __user *ksegments;
	unsigned long i, result;

	/* Don't allow clients that don't understand the native
	 * architecture to do anything.
	 */
	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
		return -EINVAL;

	if (nr_segments > KEXEC_SEGMENT_MAX)
		return -EINVAL;

	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
	for (i = 0; i < nr_segments; i++) {
		result = copy_from_user(&in, &segments[i], sizeof(in));
		if (result)
			return -EFAULT;

		out.buf   = compat_ptr(in.buf);
		out.bufsz = in.bufsz;
		out.mem   = in.mem;
		out.memsz = in.memsz;

		result = copy_to_user(&ksegments[i], &out, sizeof(out));
		if (result)
			return -EFAULT;
	}

	return sys_kexec_load(entry, nr_segments, ksegments, flags);
}
#endif
back to top