https://github.com/torvalds/linux
Revision b5accbb0dfae36d8d36cd882096943c98d5ede15 authored by Jan Kara on 22 June 2017, 13:31:13 UTC, committed by Mike Marshall on 14 September 2017, 18:54:37 UTC
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.

Fix the problem by creating __orangefs_set_acl() function that does not
call posix_acl_update_mode() and use it when inheriting ACLs. That
prevents SGID bit clearing and the mode has been properly set by
posix_acl_create() anyway.

Fixes: 073931017b49d9458aa351605b43a7e34598caef
CC: stable@vger.kernel.org
CC: Mike Marshall <hubcap@omnibond.com>
CC: pvfs2-developers@beowulf-underground.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
1 parent 569dbb8
Raw File
Tip revision: b5accbb0dfae36d8d36cd882096943c98d5ede15 authored by Jan Kara on 22 June 2017, 13:31:13 UTC
orangefs: Don't clear SGID when inheriting ACLs
Tip revision: b5accbb
pid_namespace.c
/*
 * Pid namespaces
 *
 * Authors:
 *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
 *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
 *     Many thanks to Oleg Nesterov for comments and help
 *
 */

#include <linux/pid.h>
#include <linux/pid_namespace.h>
#include <linux/user_namespace.h>
#include <linux/syscalls.h>
#include <linux/cred.h>
#include <linux/err.h>
#include <linux/acct.h>
#include <linux/slab.h>
#include <linux/proc_ns.h>
#include <linux/reboot.h>
#include <linux/export.h>
#include <linux/sched/task.h>
#include <linux/sched/signal.h>

struct pid_cache {
	int nr_ids;
	char name[16];
	struct kmem_cache *cachep;
	struct list_head list;
};

static LIST_HEAD(pid_caches_lh);
static DEFINE_MUTEX(pid_caches_mutex);
static struct kmem_cache *pid_ns_cachep;

/*
 * creates the kmem cache to allocate pids from.
 * @nr_ids: the number of numerical ids this pid will have to carry
 */

static struct kmem_cache *create_pid_cachep(int nr_ids)
{
	struct pid_cache *pcache;
	struct kmem_cache *cachep;

	mutex_lock(&pid_caches_mutex);
	list_for_each_entry(pcache, &pid_caches_lh, list)
		if (pcache->nr_ids == nr_ids)
			goto out;

	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
	if (pcache == NULL)
		goto err_alloc;

	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
	cachep = kmem_cache_create(pcache->name,
			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
			0, SLAB_HWCACHE_ALIGN, NULL);
	if (cachep == NULL)
		goto err_cachep;

	pcache->nr_ids = nr_ids;
	pcache->cachep = cachep;
	list_add(&pcache->list, &pid_caches_lh);
out:
	mutex_unlock(&pid_caches_mutex);
	return pcache->cachep;

err_cachep:
	kfree(pcache);
err_alloc:
	mutex_unlock(&pid_caches_mutex);
	return NULL;
}

static void proc_cleanup_work(struct work_struct *work)
{
	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
	pid_ns_release_proc(ns);
}

/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
#define MAX_PID_NS_LEVEL 32

static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
{
	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
}

static void dec_pid_namespaces(struct ucounts *ucounts)
{
	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
}

static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
	struct pid_namespace *parent_pid_ns)
{
	struct pid_namespace *ns;
	unsigned int level = parent_pid_ns->level + 1;
	struct ucounts *ucounts;
	int i;
	int err;

	err = -ENOSPC;
	if (level > MAX_PID_NS_LEVEL)
		goto out;
	ucounts = inc_pid_namespaces(user_ns);
	if (!ucounts)
		goto out;

	err = -ENOMEM;
	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
	if (ns == NULL)
		goto out_dec;

	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
	if (!ns->pidmap[0].page)
		goto out_free;

	ns->pid_cachep = create_pid_cachep(level + 1);
	if (ns->pid_cachep == NULL)
		goto out_free_map;

	err = ns_alloc_inum(&ns->ns);
	if (err)
		goto out_free_map;
	ns->ns.ops = &pidns_operations;

	kref_init(&ns->kref);
	ns->level = level;
	ns->parent = get_pid_ns(parent_pid_ns);
	ns->user_ns = get_user_ns(user_ns);
	ns->ucounts = ucounts;
	ns->nr_hashed = PIDNS_HASH_ADDING;
	INIT_WORK(&ns->proc_work, proc_cleanup_work);

	set_bit(0, ns->pidmap[0].page);
	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);

	for (i = 1; i < PIDMAP_ENTRIES; i++)
		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);

	return ns;

out_free_map:
	kfree(ns->pidmap[0].page);
out_free:
	kmem_cache_free(pid_ns_cachep, ns);
out_dec:
	dec_pid_namespaces(ucounts);
out:
	return ERR_PTR(err);
}

static void delayed_free_pidns(struct rcu_head *p)
{
	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);

	dec_pid_namespaces(ns->ucounts);
	put_user_ns(ns->user_ns);

	kmem_cache_free(pid_ns_cachep, ns);
}

static void destroy_pid_namespace(struct pid_namespace *ns)
{
	int i;

	ns_free_inum(&ns->ns);
	for (i = 0; i < PIDMAP_ENTRIES; i++)
		kfree(ns->pidmap[i].page);
	call_rcu(&ns->rcu, delayed_free_pidns);
}

struct pid_namespace *copy_pid_ns(unsigned long flags,
	struct user_namespace *user_ns, struct pid_namespace *old_ns)
{
	if (!(flags & CLONE_NEWPID))
		return get_pid_ns(old_ns);
	if (task_active_pid_ns(current) != old_ns)
		return ERR_PTR(-EINVAL);
	return create_pid_namespace(user_ns, old_ns);
}

static void free_pid_ns(struct kref *kref)
{
	struct pid_namespace *ns;

	ns = container_of(kref, struct pid_namespace, kref);
	destroy_pid_namespace(ns);
}

void put_pid_ns(struct pid_namespace *ns)
{
	struct pid_namespace *parent;

	while (ns != &init_pid_ns) {
		parent = ns->parent;
		if (!kref_put(&ns->kref, free_pid_ns))
			break;
		ns = parent;
	}
}
EXPORT_SYMBOL_GPL(put_pid_ns);

void zap_pid_ns_processes(struct pid_namespace *pid_ns)
{
	int nr;
	int rc;
	struct task_struct *task, *me = current;
	int init_pids = thread_group_leader(me) ? 1 : 2;

	/* Don't allow any more processes into the pid namespace */
	disable_pid_allocation(pid_ns);

	/*
	 * Ignore SIGCHLD causing any terminated children to autoreap.
	 * This speeds up the namespace shutdown, plus see the comment
	 * below.
	 */
	spin_lock_irq(&me->sighand->siglock);
	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
	spin_unlock_irq(&me->sighand->siglock);

	/*
	 * The last thread in the cgroup-init thread group is terminating.
	 * Find remaining pid_ts in the namespace, signal and wait for them
	 * to exit.
	 *
	 * Note:  This signals each threads in the namespace - even those that
	 * 	  belong to the same thread group, To avoid this, we would have
	 * 	  to walk the entire tasklist looking a processes in this
	 * 	  namespace, but that could be unnecessarily expensive if the
	 * 	  pid namespace has just a few processes. Or we need to
	 * 	  maintain a tasklist for each pid namespace.
	 *
	 */
	read_lock(&tasklist_lock);
	nr = next_pidmap(pid_ns, 1);
	while (nr > 0) {
		rcu_read_lock();

		task = pid_task(find_vpid(nr), PIDTYPE_PID);
		if (task && !__fatal_signal_pending(task))
			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);

		rcu_read_unlock();

		nr = next_pidmap(pid_ns, nr);
	}
	read_unlock(&tasklist_lock);

	/*
	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
	 * sys_wait4() will also block until our children traced from the
	 * parent namespace are detached and become EXIT_DEAD.
	 */
	do {
		clear_thread_flag(TIF_SIGPENDING);
		rc = sys_wait4(-1, NULL, __WALL, NULL);
	} while (rc != -ECHILD);

	/*
	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
	 * really care, we could reparent them to the global init. We could
	 * exit and reap ->child_reaper even if it is not the last thread in
	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
	 * pid_ns can not go away until proc_kill_sb() drops the reference.
	 *
	 * But this ns can also have other tasks injected by setns()+fork().
	 * Again, ignoring the user visible semantics we do not really need
	 * to wait until they are all reaped, but they can be reparented to
	 * us and thus we need to ensure that pid->child_reaper stays valid
	 * until they all go away. See free_pid()->wake_up_process().
	 *
	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
	 * if reparented.
	 */
	for (;;) {
		set_current_state(TASK_INTERRUPTIBLE);
		if (pid_ns->nr_hashed == init_pids)
			break;
		schedule();
	}
	__set_current_state(TASK_RUNNING);

	if (pid_ns->reboot)
		current->signal->group_exit_code = pid_ns->reboot;

	acct_exit_ns(pid_ns);
	return;
}

#ifdef CONFIG_CHECKPOINT_RESTORE
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
		void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct pid_namespace *pid_ns = task_active_pid_ns(current);
	struct ctl_table tmp = *table;

	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
		return -EPERM;

	/*
	 * Writing directly to ns' last_pid field is OK, since this field
	 * is volatile in a living namespace anyway and a code writing to
	 * it should synchronize its usage with external means.
	 */

	tmp.data = &pid_ns->last_pid;
	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
}

extern int pid_max;
static int zero = 0;
static struct ctl_table pid_ns_ctl_table[] = {
	{
		.procname = "ns_last_pid",
		.maxlen = sizeof(int),
		.mode = 0666, /* permissions are checked in the handler */
		.proc_handler = pid_ns_ctl_handler,
		.extra1 = &zero,
		.extra2 = &pid_max,
	},
	{ }
};
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
#endif	/* CONFIG_CHECKPOINT_RESTORE */

int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
{
	if (pid_ns == &init_pid_ns)
		return 0;

	switch (cmd) {
	case LINUX_REBOOT_CMD_RESTART2:
	case LINUX_REBOOT_CMD_RESTART:
		pid_ns->reboot = SIGHUP;
		break;

	case LINUX_REBOOT_CMD_POWER_OFF:
	case LINUX_REBOOT_CMD_HALT:
		pid_ns->reboot = SIGINT;
		break;
	default:
		return -EINVAL;
	}

	read_lock(&tasklist_lock);
	force_sig(SIGKILL, pid_ns->child_reaper);
	read_unlock(&tasklist_lock);

	do_exit(0);

	/* Not reached */
	return 0;
}

static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
{
	return container_of(ns, struct pid_namespace, ns);
}

static struct ns_common *pidns_get(struct task_struct *task)
{
	struct pid_namespace *ns;

	rcu_read_lock();
	ns = task_active_pid_ns(task);
	if (ns)
		get_pid_ns(ns);
	rcu_read_unlock();

	return ns ? &ns->ns : NULL;
}

static struct ns_common *pidns_for_children_get(struct task_struct *task)
{
	struct pid_namespace *ns = NULL;

	task_lock(task);
	if (task->nsproxy) {
		ns = task->nsproxy->pid_ns_for_children;
		get_pid_ns(ns);
	}
	task_unlock(task);

	if (ns) {
		read_lock(&tasklist_lock);
		if (!ns->child_reaper) {
			put_pid_ns(ns);
			ns = NULL;
		}
		read_unlock(&tasklist_lock);
	}

	return ns ? &ns->ns : NULL;
}

static void pidns_put(struct ns_common *ns)
{
	put_pid_ns(to_pid_ns(ns));
}

static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
{
	struct pid_namespace *active = task_active_pid_ns(current);
	struct pid_namespace *ancestor, *new = to_pid_ns(ns);

	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
		return -EPERM;

	/*
	 * Only allow entering the current active pid namespace
	 * or a child of the current active pid namespace.
	 *
	 * This is required for fork to return a usable pid value and
	 * this maintains the property that processes and their
	 * children can not escape their current pid namespace.
	 */
	if (new->level < active->level)
		return -EINVAL;

	ancestor = new;
	while (ancestor->level > active->level)
		ancestor = ancestor->parent;
	if (ancestor != active)
		return -EINVAL;

	put_pid_ns(nsproxy->pid_ns_for_children);
	nsproxy->pid_ns_for_children = get_pid_ns(new);
	return 0;
}

static struct ns_common *pidns_get_parent(struct ns_common *ns)
{
	struct pid_namespace *active = task_active_pid_ns(current);
	struct pid_namespace *pid_ns, *p;

	/* See if the parent is in the current namespace */
	pid_ns = p = to_pid_ns(ns)->parent;
	for (;;) {
		if (!p)
			return ERR_PTR(-EPERM);
		if (p == active)
			break;
		p = p->parent;
	}

	return &get_pid_ns(pid_ns)->ns;
}

static struct user_namespace *pidns_owner(struct ns_common *ns)
{
	return to_pid_ns(ns)->user_ns;
}

const struct proc_ns_operations pidns_operations = {
	.name		= "pid",
	.type		= CLONE_NEWPID,
	.get		= pidns_get,
	.put		= pidns_put,
	.install	= pidns_install,
	.owner		= pidns_owner,
	.get_parent	= pidns_get_parent,
};

const struct proc_ns_operations pidns_for_children_operations = {
	.name		= "pid_for_children",
	.real_ns_name	= "pid",
	.type		= CLONE_NEWPID,
	.get		= pidns_for_children_get,
	.put		= pidns_put,
	.install	= pidns_install,
	.owner		= pidns_owner,
	.get_parent	= pidns_get_parent,
};

static __init int pid_namespaces_init(void)
{
	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);

#ifdef CONFIG_CHECKPOINT_RESTORE
	register_sysctl_paths(kern_path, pid_ns_ctl_table);
#endif
	return 0;
}

__initcall(pid_namespaces_init);
back to top