Revision b8c1ae3e6da651ffc1107a760a93a7cdcd63d393 authored by David Coeurjolly on 05 June 2023, 18:59:54 UTC, committed by GitHub on 05 June 2023, 18:59:54 UTC
1 parent a181b3e
Raw File
CLI11.hpp
#pragma once

// CLI11: Version 1.8.0
// Originally designed by Henry Schreiner
// https://github.com/CLIUtils/CLI11
//
// This is a standalone header file generated by MakeSingleHeader.py in CLI11/scripts
// from: v1.8.0
//
// From LICENSE:
//
// CLI11 1.8 Copyright (c) 2017-2019 University of Cincinnati, developed by Henry
// Schreiner under NSF AWARD 1414736. All rights reserved.
// 
// Redistribution and use in source and binary forms of CLI11, with or without
// modification, are permitted provided that the following conditions are met:
// 
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its contributors
//    may be used to endorse or promote products derived from this software without
//    specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


// Standard combined includes:

#include <algorithm>
#include <cmath>
#include <deque>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <istream>
#include <iterator>
#include <locale>
#include <map>
#include <memory>
#include <numeric>
#include <set>
#include <sstream>
#include <stdexcept>
#include <string>
#include <sys/stat.h>
#include <sys/types.h>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>


// Verbatim copy from CLI/Version.hpp:


#define CLI11_VERSION_MAJOR 1
#define CLI11_VERSION_MINOR 8
#define CLI11_VERSION_PATCH 0
#define CLI11_VERSION "1.8.0"




// Verbatim copy from CLI/Macros.hpp:


// The following version macro is very similar to the one in PyBind11
#if !(defined(_MSC_VER) && __cplusplus == 199711L) && !defined(__INTEL_COMPILER)
#if __cplusplus >= 201402L
#define CLI11_CPP14
#if __cplusplus >= 201703L
#define CLI11_CPP17
#if __cplusplus > 201703L
#define CLI11_CPP20
#endif
#endif
#endif
#elif defined(_MSC_VER) && __cplusplus == 199711L
// MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented)
// Unless you use the /Zc:__cplusplus flag on Visual Studio 2017 15.7 Preview 3 or newer
#if _MSVC_LANG >= 201402L
#define CLI11_CPP14
#if _MSVC_LANG > 201402L && _MSC_VER >= 1910
#define CLI11_CPP17
#if __MSVC_LANG > 201703L && _MSC_VER >= 1910
#define CLI11_CPP20
#endif
#endif
#endif
#endif

#if defined(CLI11_CPP14)
#define CLI11_DEPRECATED(reason) [[deprecated(reason)]]
#elif defined(_MSC_VER)
#define CLI11_DEPRECATED(reason) __declspec(deprecated(reason))
#else
#define CLI11_DEPRECATED(reason) __attribute__((deprecated(reason)))
#endif




// Verbatim copy from CLI/Optional.hpp:


// You can explicitly enable or disable support
// by defining to 1 or 0. Extra check here to ensure it's in the stdlib too.
// We nest the check for __has_include and it's usage
#ifndef CLI11_STD_OPTIONAL
#ifdef __has_include
#if defined(CLI11_CPP17) && __has_include(<optional>)
#define CLI11_STD_OPTIONAL 1
#else
#define CLI11_STD_OPTIONAL 0
#endif
#else
#define CLI11_STD_OPTIONAL 0
#endif
#endif

#ifndef CLI11_EXPERIMENTAL_OPTIONAL
#define CLI11_EXPERIMENTAL_OPTIONAL 0
#endif

#ifndef CLI11_BOOST_OPTIONAL
#define CLI11_BOOST_OPTIONAL 0
#endif

#if CLI11_BOOST_OPTIONAL
#include <boost/version.hpp>
#if BOOST_VERSION < 106100
#error "This boost::optional version is not supported, use 1.61 or better"
#endif
#endif

#if CLI11_STD_OPTIONAL
#include <optional>
#endif
#if CLI11_EXPERIMENTAL_OPTIONAL
#include <experimental/optional>
#endif
#if CLI11_BOOST_OPTIONAL
#include <boost/optional.hpp>
#include <boost/optional/optional_io.hpp>
#endif


// From CLI/Version.hpp:



// From CLI/Macros.hpp:



// From CLI/Optional.hpp:

namespace CLI {

#if CLI11_STD_OPTIONAL
template <typename T> std::istream &operator>>(std::istream &in, std::optional<T> &val) {
    T v;
    in >> v;
    val = v;
    return in;
}
#endif

#if CLI11_EXPERIMENTAL_OPTIONAL
template <typename T> std::istream &operator>>(std::istream &in, std::experimental::optional<T> &val) {
    T v;
    in >> v;
    val = v;
    return in;
}
#endif

#if CLI11_BOOST_OPTIONAL
template <typename T> std::istream &operator>>(std::istream &in, boost::optional<T> &val) {
    T v;
    in >> v;
    val = v;
    return in;
}
#endif

// Export the best optional to the CLI namespace
#if CLI11_STD_OPTIONAL
using std::optional;
#elif CLI11_EXPERIMENTAL_OPTIONAL
using std::experimental::optional;
#elif CLI11_BOOST_OPTIONAL
using boost::optional;
#endif

// This is true if any optional is found
#if CLI11_STD_OPTIONAL || CLI11_EXPERIMENTAL_OPTIONAL || CLI11_BOOST_OPTIONAL
#define CLI11_OPTIONAL 1
#endif

} // namespace CLI

// From CLI/StringTools.hpp:

namespace CLI {

/// Include the items in this namespace to get free conversion of enums to/from streams.
/// (This is available inside CLI as well, so CLI11 will use this without a using statement).
namespace enums {

/// output streaming for enumerations
template <typename T, typename = typename std::enable_if<std::is_enum<T>::value>::type>
std::ostream &operator<<(std::ostream &in, const T &item) {
    // make sure this is out of the detail namespace otherwise it won't be found when needed
    return in << static_cast<typename std::underlying_type<T>::type>(item);
}

/// input streaming for enumerations
template <typename T, typename = typename std::enable_if<std::is_enum<T>::value>::type>
std::istream &operator>>(std::istream &in, T &item) {
    typename std::underlying_type<T>::type i;
    in >> i;
    item = static_cast<T>(i);
    return in;
}
} // namespace enums

/// Export to CLI namespace
using namespace enums;

namespace detail {

// Based on http://stackoverflow.com/questions/236129/split-a-string-in-c
/// Split a string by a delim
inline std::vector<std::string> split(const std::string &s, char delim) {
    std::vector<std::string> elems;
    // Check to see if empty string, give consistent result
    if(s.empty())
        elems.emplace_back();
    else {
        std::stringstream ss;
        ss.str(s);
        std::string item;
        while(std::getline(ss, item, delim)) {
            elems.push_back(item);
        }
    }
    return elems;
}
/// simple utility to convert various types to a string
template <typename T> inline std::string as_string(const T &v) {
    std::ostringstream s;
    s << v;
    return s.str();
}
// if the data type is already a string just forward it
template <typename T, typename = typename std::enable_if<std::is_constructible<std::string, T>::value>::type>
inline auto as_string(T &&v) -> decltype(std::forward<T>(v)) {
    return std::forward<T>(v);
}

/// Simple function to join a string
template <typename T> std::string join(const T &v, std::string delim = ",") {
    std::ostringstream s;
    auto beg = std::begin(v);
    auto end = std::end(v);
    if(beg != end)
        s << *beg++;
    while(beg != end) {
        s << delim << *beg++;
    }
    return s.str();
}

/// Simple function to join a string from processed elements
template <typename T,
          typename Callable,
          typename = typename std::enable_if<!std::is_constructible<std::string, Callable>::value>::type>
std::string join(const T &v, Callable func, std::string delim = ",") {
    std::ostringstream s;
    auto beg = std::begin(v);
    auto end = std::end(v);
    if(beg != end)
        s << func(*beg++);
    while(beg != end) {
        s << delim << func(*beg++);
    }
    return s.str();
}

/// Join a string in reverse order
template <typename T> std::string rjoin(const T &v, std::string delim = ",") {
    std::ostringstream s;
    for(size_t start = 0; start < v.size(); start++) {
        if(start > 0)
            s << delim;
        s << v[v.size() - start - 1];
    }
    return s.str();
}

// Based roughly on http://stackoverflow.com/questions/25829143/c-trim-whitespace-from-a-string

/// Trim whitespace from left of string
inline std::string &ltrim(std::string &str) {
    auto it = std::find_if(str.begin(), str.end(), [](char ch) { return !std::isspace<char>(ch, std::locale()); });
    str.erase(str.begin(), it);
    return str;
}

/// Trim anything from left of string
inline std::string &ltrim(std::string &str, const std::string &filter) {
    auto it = std::find_if(str.begin(), str.end(), [&filter](char ch) { return filter.find(ch) == std::string::npos; });
    str.erase(str.begin(), it);
    return str;
}

/// Trim whitespace from right of string
inline std::string &rtrim(std::string &str) {
    auto it = std::find_if(str.rbegin(), str.rend(), [](char ch) { return !std::isspace<char>(ch, std::locale()); });
    str.erase(it.base(), str.end());
    return str;
}

/// Trim anything from right of string
inline std::string &rtrim(std::string &str, const std::string &filter) {
    auto it =
        std::find_if(str.rbegin(), str.rend(), [&filter](char ch) { return filter.find(ch) == std::string::npos; });
    str.erase(it.base(), str.end());
    return str;
}

/// Trim whitespace from string
inline std::string &trim(std::string &str) { return ltrim(rtrim(str)); }

/// Trim anything from string
inline std::string &trim(std::string &str, const std::string filter) { return ltrim(rtrim(str, filter), filter); }

/// Make a copy of the string and then trim it
inline std::string trim_copy(const std::string &str) {
    std::string s = str;
    return trim(s);
}

/// Make a copy of the string and then trim it, any filter string can be used (any char in string is filtered)
inline std::string trim_copy(const std::string &str, const std::string &filter) {
    std::string s = str;
    return trim(s, filter);
}
/// Print a two part "help" string
inline std::ostream &format_help(std::ostream &out, std::string name, std::string description, size_t wid) {
    name = "  " + name;
    out << std::setw(static_cast<int>(wid)) << std::left << name;
    if(!description.empty()) {
        if(name.length() >= wid)
            out << "\n" << std::setw(static_cast<int>(wid)) << "";
        for(const char c : description) {
            out.put(c);
            if(c == '\n') {
                out << std::setw(static_cast<int>(wid)) << "";
            }
        }
    }
    out << "\n";
    return out;
}

/// Verify the first character of an option
template <typename T> bool valid_first_char(T c) {
    return std::isalnum(c, std::locale()) || c == '_' || c == '?' || c == '@';
}

/// Verify following characters of an option
template <typename T> bool valid_later_char(T c) { return valid_first_char(c) || c == '.' || c == '-'; }

/// Verify an option name
inline bool valid_name_string(const std::string &str) {
    if(str.empty() || !valid_first_char(str[0]))
        return false;
    for(auto c : str.substr(1))
        if(!valid_later_char(c))
            return false;
    return true;
}

/// Verify that str consists of letters only
inline bool isalpha(const std::string &str) {
    return std::all_of(str.begin(), str.end(), [](char c) { return std::isalpha(c, std::locale()); });
}

/// Return a lower case version of a string
inline std::string to_lower(std::string str) {
    std::transform(std::begin(str), std::end(str), std::begin(str), [](const std::string::value_type &x) {
        return std::tolower(x, std::locale());
    });
    return str;
}

/// remove underscores from a string
inline std::string remove_underscore(std::string str) {
    str.erase(std::remove(std::begin(str), std::end(str), '_'), std::end(str));
    return str;
}

/// Find and replace a substring with another substring
inline std::string find_and_replace(std::string str, std::string from, std::string to) {

    size_t start_pos = 0;

    while((start_pos = str.find(from, start_pos)) != std::string::npos) {
        str.replace(start_pos, from.length(), to);
        start_pos += to.length();
    }

    return str;
}

/// check if the flag definitions has possible false flags
inline bool has_default_flag_values(const std::string &flags) {
    return (flags.find_first_of("{!") != std::string::npos);
}

inline void remove_default_flag_values(std::string &flags) {
    auto loc = flags.find_first_of('{');
    while(loc != std::string::npos) {
        auto finish = flags.find_first_of("},", loc + 1);
        if((finish != std::string::npos) && (flags[finish] == '}')) {
            flags.erase(flags.begin() + static_cast<std::ptrdiff_t>(loc),
                        flags.begin() + static_cast<std::ptrdiff_t>(finish) + 1);
        }
        loc = flags.find_first_of('{', loc + 1);
    }
    flags.erase(std::remove(flags.begin(), flags.end(), '!'), flags.end());
}

/// Check if a string is a member of a list of strings and optionally ignore case or ignore underscores
inline std::ptrdiff_t find_member(std::string name,
                                  const std::vector<std::string> names,
                                  bool ignore_case = false,
                                  bool ignore_underscore = false) {
    auto it = std::end(names);
    if(ignore_case) {
        if(ignore_underscore) {
            name = detail::to_lower(detail::remove_underscore(name));
            it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
                return detail::to_lower(detail::remove_underscore(local_name)) == name;
            });
        } else {
            name = detail::to_lower(name);
            it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
                return detail::to_lower(local_name) == name;
            });
        }

    } else if(ignore_underscore) {
        name = detail::remove_underscore(name);
        it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
            return detail::remove_underscore(local_name) == name;
        });
    } else
        it = std::find(std::begin(names), std::end(names), name);

    return (it != std::end(names)) ? (it - std::begin(names)) : (-1);
}

/// Find a trigger string and call a modify callable function that takes the current string and starting position of the
/// trigger and returns the position in the string to search for the next trigger string
template <typename Callable> inline std::string find_and_modify(std::string str, std::string trigger, Callable modify) {
    size_t start_pos = 0;
    while((start_pos = str.find(trigger, start_pos)) != std::string::npos) {
        start_pos = modify(str, start_pos);
    }
    return str;
}

/// Split a string '"one two" "three"' into 'one two', 'three'
/// Quote characters can be ` ' or "
inline std::vector<std::string> split_up(std::string str) {

    const std::string delims("\'\"`");
    auto find_ws = [](char ch) { return std::isspace<char>(ch, std::locale()); };
    trim(str);

    std::vector<std::string> output;
    bool embeddedQuote = false;
    char keyChar = ' ';
    while(!str.empty()) {
        if(delims.find_first_of(str[0]) != std::string::npos) {
            keyChar = str[0];
            auto end = str.find_first_of(keyChar, 1);
            while((end != std::string::npos) && (str[end - 1] == '\\')) { // deal with escaped quotes
                end = str.find_first_of(keyChar, end + 1);
                embeddedQuote = true;
            }
            if(end != std::string::npos) {
                output.push_back(str.substr(1, end - 1));
                str = str.substr(end + 1);
            } else {
                output.push_back(str.substr(1));
                str = "";
            }
        } else {
            auto it = std::find_if(std::begin(str), std::end(str), find_ws);
            if(it != std::end(str)) {
                std::string value = std::string(str.begin(), it);
                output.push_back(value);
                str = std::string(it, str.end());
            } else {
                output.push_back(str);
                str = "";
            }
        }
        // transform any embedded quotes into the regular character
        if(embeddedQuote) {
            output.back() = find_and_replace(output.back(), std::string("\\") + keyChar, std::string(1, keyChar));
            embeddedQuote = false;
        }
        trim(str);
    }
    return output;
}

/// Add a leader to the beginning of all new lines (nothing is added
/// at the start of the first line). `"; "` would be for ini files
///
/// Can't use Regex, or this would be a subs.
inline std::string fix_newlines(std::string leader, std::string input) {
    std::string::size_type n = 0;
    while(n != std::string::npos && n < input.size()) {
        n = input.find('\n', n);
        if(n != std::string::npos) {
            input = input.substr(0, n + 1) + leader + input.substr(n + 1);
            n += leader.size();
        }
    }
    return input;
}

/// This function detects an equal or colon followed by an escaped quote after an argument
/// then modifies the string to replace the equality with a space.  This is needed
/// to allow the split up function to work properly and is intended to be used with the find_and_modify function
/// the return value is the offset+1 which is required by the find_and_modify function.
inline size_t escape_detect(std::string &str, size_t offset) {
    auto next = str[offset + 1];
    if((next == '\"') || (next == '\'') || (next == '`')) {
        auto astart = str.find_last_of("-/ \"\'`", offset - 1);
        if(astart != std::string::npos) {
            if(str[astart] == ((str[offset] == '=') ? '-' : '/'))
                str[offset] = ' '; // interpret this as a space so the split_up works properly
        }
    }
    return offset + 1;
}

/// Add quotes if the string contains spaces
inline std::string &add_quotes_if_needed(std::string &str) {
    if((str.front() != '"' && str.front() != '\'') || str.front() != str.back()) {
        char quote = str.find('"') < str.find('\'') ? '\'' : '"';
        if(str.find(' ') != std::string::npos) {
            str.insert(0, 1, quote);
            str.append(1, quote);
        }
    }
    return str;
}

} // namespace detail

} // namespace CLI

// From CLI/Error.hpp:

namespace CLI {

// Use one of these on all error classes.
// These are temporary and are undef'd at the end of this file.
#define CLI11_ERROR_DEF(parent, name)                                                                                  \
  protected:                                                                                                           \
    name(std::string ename, std::string msg, int exit_code) : parent(std::move(ename), std::move(msg), exit_code) {}   \
    name(std::string ename, std::string msg, ExitCodes exit_code)                                                      \
        : parent(std::move(ename), std::move(msg), exit_code) {}                                                       \
                                                                                                                       \
  public:                                                                                                              \
    name(std::string msg, ExitCodes exit_code) : parent(#name, std::move(msg), exit_code) {}                           \
    name(std::string msg, int exit_code) : parent(#name, std::move(msg), exit_code) {}

// This is added after the one above if a class is used directly and builds its own message
#define CLI11_ERROR_SIMPLE(name)                                                                                       \
    explicit name(std::string msg) : name(#name, msg, ExitCodes::name) {}

/// These codes are part of every error in CLI. They can be obtained from e using e.exit_code or as a quick shortcut,
/// int values from e.get_error_code().
enum class ExitCodes {
    Success = 0,
    IncorrectConstruction = 100,
    BadNameString,
    OptionAlreadyAdded,
    FileError,
    ConversionError,
    ValidationError,
    RequiredError,
    RequiresError,
    ExcludesError,
    ExtrasError,
    ConfigError,
    InvalidError,
    HorribleError,
    OptionNotFound,
    ArgumentMismatch,
    BaseClass = 127
};

// Error definitions

/// @defgroup error_group Errors
/// @brief Errors thrown by CLI11
///
/// These are the errors that can be thrown. Some of them, like CLI::Success, are not really errors.
/// @{

/// All errors derive from this one
class Error : public std::runtime_error {
    int actual_exit_code;
    std::string error_name{"Error"};

  public:
    int get_exit_code() const { return actual_exit_code; }

    std::string get_name() const { return error_name; }

    Error(std::string name, std::string msg, int exit_code = static_cast<int>(ExitCodes::BaseClass))
        : runtime_error(msg), actual_exit_code(exit_code), error_name(std::move(name)) {}

    Error(std::string name, std::string msg, ExitCodes exit_code) : Error(name, msg, static_cast<int>(exit_code)) {}
};

// Note: Using Error::Error constructors does not work on GCC 4.7

/// Construction errors (not in parsing)
class ConstructionError : public Error {
    CLI11_ERROR_DEF(Error, ConstructionError)
};

/// Thrown when an option is set to conflicting values (non-vector and multi args, for example)
class IncorrectConstruction : public ConstructionError {
    CLI11_ERROR_DEF(ConstructionError, IncorrectConstruction)
    CLI11_ERROR_SIMPLE(IncorrectConstruction)
    static IncorrectConstruction PositionalFlag(std::string name) {
        return IncorrectConstruction(name + ": Flags cannot be positional");
    }
    static IncorrectConstruction Set0Opt(std::string name) {
        return IncorrectConstruction(name + ": Cannot set 0 expected, use a flag instead");
    }
    static IncorrectConstruction SetFlag(std::string name) {
        return IncorrectConstruction(name + ": Cannot set an expected number for flags");
    }
    static IncorrectConstruction ChangeNotVector(std::string name) {
        return IncorrectConstruction(name + ": You can only change the expected arguments for vectors");
    }
    static IncorrectConstruction AfterMultiOpt(std::string name) {
        return IncorrectConstruction(
            name + ": You can't change expected arguments after you've changed the multi option policy!");
    }
    static IncorrectConstruction MissingOption(std::string name) {
        return IncorrectConstruction("Option " + name + " is not defined");
    }
    static IncorrectConstruction MultiOptionPolicy(std::string name) {
        return IncorrectConstruction(name + ": multi_option_policy only works for flags and exact value options");
    }
};

/// Thrown on construction of a bad name
class BadNameString : public ConstructionError {
    CLI11_ERROR_DEF(ConstructionError, BadNameString)
    CLI11_ERROR_SIMPLE(BadNameString)
    static BadNameString OneCharName(std::string name) { return BadNameString("Invalid one char name: " + name); }
    static BadNameString BadLongName(std::string name) { return BadNameString("Bad long name: " + name); }
    static BadNameString DashesOnly(std::string name) {
        return BadNameString("Must have a name, not just dashes: " + name);
    }
    static BadNameString MultiPositionalNames(std::string name) {
        return BadNameString("Only one positional name allowed, remove: " + name);
    }
};

/// Thrown when an option already exists
class OptionAlreadyAdded : public ConstructionError {
    CLI11_ERROR_DEF(ConstructionError, OptionAlreadyAdded)
    explicit OptionAlreadyAdded(std::string name)
        : OptionAlreadyAdded(name + " is already added", ExitCodes::OptionAlreadyAdded) {}
    static OptionAlreadyAdded Requires(std::string name, std::string other) {
        return OptionAlreadyAdded(name + " requires " + other, ExitCodes::OptionAlreadyAdded);
    }
    static OptionAlreadyAdded Excludes(std::string name, std::string other) {
        return OptionAlreadyAdded(name + " excludes " + other, ExitCodes::OptionAlreadyAdded);
    }
};

// Parsing errors

/// Anything that can error in Parse
class ParseError : public Error {
    CLI11_ERROR_DEF(Error, ParseError)
};

// Not really "errors"

/// This is a successful completion on parsing, supposed to exit
class Success : public ParseError {
    CLI11_ERROR_DEF(ParseError, Success)
    Success() : Success("Successfully completed, should be caught and quit", ExitCodes::Success) {}
};

/// -h or --help on command line
class CallForHelp : public ParseError {
    CLI11_ERROR_DEF(ParseError, CallForHelp)
    CallForHelp() : CallForHelp("This should be caught in your main function, see examples", ExitCodes::Success) {}
};

/// Usually something like --help-all on command line
class CallForAllHelp : public ParseError {
    CLI11_ERROR_DEF(ParseError, CallForAllHelp)
    CallForAllHelp()
        : CallForAllHelp("This should be caught in your main function, see examples", ExitCodes::Success) {}
};

/// Does not output a diagnostic in CLI11_PARSE, but allows to return from main() with a specific error code.
class RuntimeError : public ParseError {
    CLI11_ERROR_DEF(ParseError, RuntimeError)
    explicit RuntimeError(int exit_code = 1) : RuntimeError("Runtime error", exit_code) {}
};

/// Thrown when parsing an INI file and it is missing
class FileError : public ParseError {
    CLI11_ERROR_DEF(ParseError, FileError)
    CLI11_ERROR_SIMPLE(FileError)
    static FileError Missing(std::string name) { return FileError(name + " was not readable (missing?)"); }
};

/// Thrown when conversion call back fails, such as when an int fails to coerce to a string
class ConversionError : public ParseError {
    CLI11_ERROR_DEF(ParseError, ConversionError)
    CLI11_ERROR_SIMPLE(ConversionError)
    ConversionError(std::string member, std::string name)
        : ConversionError("The value " + member + " is not an allowed value for " + name) {}
    ConversionError(std::string name, std::vector<std::string> results)
        : ConversionError("Could not convert: " + name + " = " + detail::join(results)) {}
    static ConversionError TooManyInputsFlag(std::string name) {
        return ConversionError(name + ": too many inputs for a flag");
    }
    static ConversionError TrueFalse(std::string name) {
        return ConversionError(name + ": Should be true/false or a number");
    }
};

/// Thrown when validation of results fails
class ValidationError : public ParseError {
    CLI11_ERROR_DEF(ParseError, ValidationError)
    CLI11_ERROR_SIMPLE(ValidationError)
    explicit ValidationError(std::string name, std::string msg) : ValidationError(name + ": " + msg) {}
};

/// Thrown when a required option is missing
class RequiredError : public ParseError {
    CLI11_ERROR_DEF(ParseError, RequiredError)
    explicit RequiredError(std::string name) : RequiredError(name + " is required", ExitCodes::RequiredError) {}
    static RequiredError Subcommand(size_t min_subcom) {
        if(min_subcom == 1)
            return RequiredError("A subcommand");
        else
            return RequiredError("Requires at least " + std::to_string(min_subcom) + " subcommands",
                                 ExitCodes::RequiredError);
    }
    static RequiredError Option(size_t min_option, size_t max_option, size_t used, const std::string &option_list) {
        if((min_option == 1) && (max_option == 1) && (used == 0))
            return RequiredError("Exactly 1 option from [" + option_list + "]");
        else if((min_option == 1) && (max_option == 1) && (used > 1))
            return RequiredError("Exactly 1 option from [" + option_list + "] is required and " + std::to_string(used) +
                                     " were given",
                                 ExitCodes::RequiredError);
        else if((min_option == 1) && (used == 0))
            return RequiredError("At least 1 option from [" + option_list + "]");
        else if(used < min_option)
            return RequiredError("Requires at least " + std::to_string(min_option) + " options used and only " +
                                     std::to_string(used) + "were given from [" + option_list + "]",
                                 ExitCodes::RequiredError);
        else if(max_option == 1)
            return RequiredError("Requires at most 1 options be given from [" + option_list + "]",
                                 ExitCodes::RequiredError);
        else
            return RequiredError("Requires at most " + std::to_string(max_option) + " options be used and " +
                                     std::to_string(used) + "were given from [" + option_list + "]",
                                 ExitCodes::RequiredError);
    }
};

/// Thrown when the wrong number of arguments has been received
class ArgumentMismatch : public ParseError {
    CLI11_ERROR_DEF(ParseError, ArgumentMismatch)
    CLI11_ERROR_SIMPLE(ArgumentMismatch)
    ArgumentMismatch(std::string name, int expected, size_t recieved)
        : ArgumentMismatch(expected > 0 ? ("Expected exactly " + std::to_string(expected) + " arguments to " + name +
                                           ", got " + std::to_string(recieved))
                                        : ("Expected at least " + std::to_string(-expected) + " arguments to " + name +
                                           ", got " + std::to_string(recieved)),
                           ExitCodes::ArgumentMismatch) {}

    static ArgumentMismatch AtLeast(std::string name, int num) {
        return ArgumentMismatch(name + ": At least " + std::to_string(num) + " required");
    }
    static ArgumentMismatch TypedAtLeast(std::string name, int num, std::string type) {
        return ArgumentMismatch(name + ": " + std::to_string(num) + " required " + type + " missing");
    }
    static ArgumentMismatch FlagOverride(std::string name) {
        return ArgumentMismatch(name + " was given a disallowed flag override");
    }
};

/// Thrown when a requires option is missing
class RequiresError : public ParseError {
    CLI11_ERROR_DEF(ParseError, RequiresError)
    RequiresError(std::string curname, std::string subname)
        : RequiresError(curname + " requires " + subname, ExitCodes::RequiresError) {}
};

/// Thrown when an excludes option is present
class ExcludesError : public ParseError {
    CLI11_ERROR_DEF(ParseError, ExcludesError)
    ExcludesError(std::string curname, std::string subname)
        : ExcludesError(curname + " excludes " + subname, ExitCodes::ExcludesError) {}
};

/// Thrown when too many positionals or options are found
class ExtrasError : public ParseError {
    CLI11_ERROR_DEF(ParseError, ExtrasError)
    explicit ExtrasError(std::vector<std::string> args)
        : ExtrasError((args.size() > 1 ? "The following arguments were not expected: "
                                       : "The following argument was not expected: ") +
                          detail::rjoin(args, " "),
                      ExitCodes::ExtrasError) {}
};

/// Thrown when extra values are found in an INI file
class ConfigError : public ParseError {
    CLI11_ERROR_DEF(ParseError, ConfigError)
    CLI11_ERROR_SIMPLE(ConfigError)
    static ConfigError Extras(std::string item) { return ConfigError("INI was not able to parse " + item); }
    static ConfigError NotConfigurable(std::string item) {
        return ConfigError(item + ": This option is not allowed in a configuration file");
    }
};

/// Thrown when validation fails before parsing
class InvalidError : public ParseError {
    CLI11_ERROR_DEF(ParseError, InvalidError)
    explicit InvalidError(std::string name)
        : InvalidError(name + ": Too many positional arguments with unlimited expected args", ExitCodes::InvalidError) {
    }
};

/// This is just a safety check to verify selection and parsing match - you should not ever see it
/// Strings are directly added to this error, but again, it should never be seen.
class HorribleError : public ParseError {
    CLI11_ERROR_DEF(ParseError, HorribleError)
    CLI11_ERROR_SIMPLE(HorribleError)
};

// After parsing

/// Thrown when counting a non-existent option
class OptionNotFound : public Error {
    CLI11_ERROR_DEF(Error, OptionNotFound)
    explicit OptionNotFound(std::string name) : OptionNotFound(name + " not found", ExitCodes::OptionNotFound) {}
};

#undef CLI11_ERROR_DEF
#undef CLI11_ERROR_SIMPLE

/// @}

} // namespace CLI

// From CLI/TypeTools.hpp:

namespace CLI {

// Type tools

// Utilities for type enabling
namespace detail {
// Based generally on https://rmf.io/cxx11/almost-static-if
/// Simple empty scoped class
enum class enabler {};

/// An instance to use in EnableIf
constexpr enabler dummy = {};
} // namespace detail

/// A copy of enable_if_t from C++14, compatible with C++11.
///
/// We could check to see if C++14 is being used, but it does not hurt to redefine this
/// (even Google does this: https://github.com/google/skia/blob/master/include/private/SkTLogic.h)
/// It is not in the std namespace anyway, so no harm done.
template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;

/// A copy of std::void_t from C++17 (helper for C++11 and C++14)
template <typename... Ts> struct make_void { using type = void; };

/// A copy of std::void_t from C++17 - same reasoning as enable_if_t, it does not hurt to redefine
template <typename... Ts> using void_t = typename make_void<Ts...>::type;

/// A copy of std::conditional_t from C++14 - same reasoning as enable_if_t, it does not hurt to redefine
template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type;

/// Check to see if something is a vector (fail check by default)
template <typename T> struct is_vector : std::false_type {};

/// Check to see if something is a vector (true if actually a vector)
template <class T, class A> struct is_vector<std::vector<T, A>> : std::true_type {};

/// Check to see if something is bool (fail check by default)
template <typename T> struct is_bool : std::false_type {};

/// Check to see if something is bool (true if actually a bool)
template <> struct is_bool<bool> : std::true_type {};

/// Check to see if something is a shared pointer
template <typename T> struct is_shared_ptr : std::false_type {};

/// Check to see if something is a shared pointer (True if really a shared pointer)
template <typename T> struct is_shared_ptr<std::shared_ptr<T>> : std::true_type {};

/// Check to see if something is a shared pointer (True if really a shared pointer)
template <typename T> struct is_shared_ptr<const std::shared_ptr<T>> : std::true_type {};

/// Check to see if something is copyable pointer
template <typename T> struct is_copyable_ptr {
    static bool const value = is_shared_ptr<T>::value || std::is_pointer<T>::value;
};

/// This can be specialized to override the type deduction for IsMember.
template <typename T> struct IsMemberType { using type = T; };

/// The main custom type needed here is const char * should be a string.
template <> struct IsMemberType<const char *> { using type = std::string; };

namespace detail {

// These are utilities for IsMember

/// Handy helper to access the element_type generically. This is not part of is_copyable_ptr because it requires that
/// pointer_traits<T> be valid.
template <typename T> struct element_type {
    using type =
        typename std::conditional<is_copyable_ptr<T>::value, typename std::pointer_traits<T>::element_type, T>::type;
};

/// Combination of the element type and value type - remove pointer (including smart pointers) and get the value_type of
/// the container
template <typename T> struct element_value_type { using type = typename element_type<T>::type::value_type; };

/// Adaptor for set-like structure: This just wraps a normal container in a few utilities that do almost nothing.
template <typename T, typename _ = void> struct pair_adaptor : std::false_type {
    using value_type = typename T::value_type;
    using first_type = typename std::remove_const<value_type>::type;
    using second_type = typename std::remove_const<value_type>::type;

    /// Get the first value (really just the underlying value)
    template <typename Q> static auto first(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
        return std::forward<Q>(pair_value);
    }
    /// Get the second value (really just the underlying value)
    template <typename Q> static auto second(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
        return std::forward<Q>(pair_value);
    }
};

/// Adaptor for map-like structure (true version, must have key_type and mapped_type).
/// This wraps a mapped container in a few utilities access it in a general way.
template <typename T>
struct pair_adaptor<
    T,
    conditional_t<false, void_t<typename T::value_type::first_type, typename T::value_type::second_type>, void>>
    : std::true_type {
    using value_type = typename T::value_type;
    using first_type = typename std::remove_const<typename value_type::first_type>::type;
    using second_type = typename std::remove_const<typename value_type::second_type>::type;

    /// Get the first value (really just the underlying value)
    template <typename Q> static auto first(Q &&pair_value) -> decltype(std::get<0>(std::forward<Q>(pair_value))) {
        return std::get<0>(std::forward<Q>(pair_value));
    }
    /// Get the second value (really just the underlying value)
    template <typename Q> static auto second(Q &&pair_value) -> decltype(std::get<1>(std::forward<Q>(pair_value))) {
        return std::get<1>(std::forward<Q>(pair_value));
    }
};

// Check for streamability
// Based on https://stackoverflow.com/questions/22758291/how-can-i-detect-if-a-type-can-be-streamed-to-an-stdostream

template <typename S, typename T> class is_streamable {
    template <typename SS, typename TT>
    static auto test(int) -> decltype(std::declval<SS &>() << std::declval<TT>(), std::true_type());

    template <typename, typename> static auto test(...) -> std::false_type;

  public:
    static const bool value = decltype(test<S, T>(0))::value;
};

/// Convert an object to a string (directly forward if this can become a string)
template <typename T, enable_if_t<std::is_constructible<std::string, T>::value, detail::enabler> = detail::dummy>
auto to_string(T &&value) -> decltype(std::forward<T>(value)) {
    return std::forward<T>(value);
}

/// Convert an object to a string (streaming must be supported for that type)
template <typename T,
          enable_if_t<!std::is_constructible<std::string, T>::value && is_streamable<std::stringstream, T>::value,
                      detail::enabler> = detail::dummy>
std::string to_string(T &&value) {
    std::stringstream stream;
    stream << value;
    return stream.str();
}

/// If conversion is not supported, return an empty string (streaming is not supported for that type)
template <typename T,
          enable_if_t<!std::is_constructible<std::string, T>::value && !is_streamable<std::stringstream, T>::value,
                      detail::enabler> = detail::dummy>
std::string to_string(T &&) {
    return std::string{};
}

// Type name print

/// Was going to be based on
///  http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
/// But this is cleaner and works better in this case

template <typename T,
          enable_if_t<std::is_integral<T>::value && std::is_signed<T>::value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
    return "INT";
}

template <typename T,
          enable_if_t<std::is_integral<T>::value && std::is_unsigned<T>::value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
    return "UINT";
}

template <typename T, enable_if_t<std::is_floating_point<T>::value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
    return "FLOAT";
}

/// This one should not be used, since vector types print the internal type
template <typename T, enable_if_t<is_vector<T>::value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
    return "VECTOR";
}
/// Print name for enumeration types
template <typename T, enable_if_t<std::is_enum<T>::value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
    return "ENUM";
}

/// Print for all other types
template <typename T,
          enable_if_t<!std::is_floating_point<T>::value && !std::is_integral<T>::value && !is_vector<T>::value &&
                          !std::is_enum<T>::value,
                      detail::enabler> = detail::dummy>
constexpr const char *type_name() {
    return "TEXT";
}

// Lexical cast

/// Convert a flag into an integer value  typically binary flags
inline int64_t to_flag_value(std::string val) {
    static const std::string trueString("true");
    static const std::string falseString("false");
    if(val == trueString) {
        return 1;
    }
    if(val == falseString) {
        return -1;
    }
    val = detail::to_lower(val);
    int64_t ret;
    if(val.size() == 1) {
        switch(val[0]) {
        case '0':
        case 'f':
        case 'n':
        case '-':
            ret = -1;
            break;
        case '1':
        case 't':
        case 'y':
        case '+':
            ret = 1;
            break;
        case '2':
        case '3':
        case '4':
        case '5':
        case '6':
        case '7':
        case '8':
        case '9':
            ret = val[0] - '0';
            break;
        default:
            throw std::invalid_argument("unrecognized character");
        }
        return ret;
    }
    if(val == trueString || val == "on" || val == "yes" || val == "enable") {
        ret = 1;
    } else if(val == falseString || val == "off" || val == "no" || val == "disable") {
        ret = -1;
    } else {
        ret = std::stoll(val);
    }
    return ret;
}

/// Signed integers
template <
    typename T,
    enable_if_t<std::is_integral<T>::value && std::is_signed<T>::value && !is_bool<T>::value && !std::is_enum<T>::value,
                detail::enabler> = detail::dummy>
bool lexical_cast(std::string input, T &output) {
    try {
        size_t n = 0;
        long long output_ll = std::stoll(input, &n, 0);
        output = static_cast<T>(output_ll);
        return n == input.size() && static_cast<long long>(output) == output_ll;
    } catch(const std::invalid_argument &) {
        return false;
    } catch(const std::out_of_range &) {
        return false;
    }
}

/// Unsigned integers
template <typename T,
          enable_if_t<std::is_integral<T>::value && std::is_unsigned<T>::value && !is_bool<T>::value, detail::enabler> =
              detail::dummy>
bool lexical_cast(std::string input, T &output) {
    if(!input.empty() && input.front() == '-')
        return false; // std::stoull happily converts negative values to junk without any errors.

    try {
        size_t n = 0;
        unsigned long long output_ll = std::stoull(input, &n, 0);
        output = static_cast<T>(output_ll);
        return n == input.size() && static_cast<unsigned long long>(output) == output_ll;
    } catch(const std::invalid_argument &) {
        return false;
    } catch(const std::out_of_range &) {
        return false;
    }
}

/// Boolean values
template <typename T, enable_if_t<is_bool<T>::value, detail::enabler> = detail::dummy>
bool lexical_cast(std::string input, T &output) {
    try {
        auto out = to_flag_value(input);
        output = (out > 0);
        return true;
    } catch(const std::invalid_argument &) {
        return false;
    }
}

/// Floats
template <typename T, enable_if_t<std::is_floating_point<T>::value, detail::enabler> = detail::dummy>
bool lexical_cast(std::string input, T &output) {
    try {
        size_t n = 0;
        output = static_cast<T>(std::stold(input, &n));
        return n == input.size();
    } catch(const std::invalid_argument &) {
        return false;
    } catch(const std::out_of_range &) {
        return false;
    }
}

/// String and similar
template <typename T,
          enable_if_t<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
                          std::is_assignable<T &, std::string>::value,
                      detail::enabler> = detail::dummy>
bool lexical_cast(std::string input, T &output) {
    output = input;
    return true;
}

/// Enumerations
template <typename T, enable_if_t<std::is_enum<T>::value, detail::enabler> = detail::dummy>
bool lexical_cast(std::string input, T &output) {
    typename std::underlying_type<T>::type val;
    bool retval = detail::lexical_cast(input, val);
    if(!retval) {
        return false;
    }
    output = static_cast<T>(val);
    return true;
}

/// Non-string parsable
template <typename T,
          enable_if_t<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
                          !std::is_assignable<T &, std::string>::value && !std::is_enum<T>::value,
                      detail::enabler> = detail::dummy>
bool lexical_cast(std::string input, T &output) {
    std::istringstream is;

    is.str(input);
    is >> output;
    return !is.fail() && !is.rdbuf()->in_avail();
}

/// Sum a vector of flag representations
/// The flag vector produces a series of strings in a vector,  simple true is represented by a "1",  simple false is by
/// "-1" an if numbers are passed by some fashion they are captured as well so the function just checks for the most
/// common true and false strings then uses stoll to convert the rest for summing
template <typename T,
          enable_if_t<std::is_integral<T>::value && std::is_unsigned<T>::value, detail::enabler> = detail::dummy>
void sum_flag_vector(const std::vector<std::string> &flags, T &output) {
    int64_t count{0};
    for(auto &flag : flags) {
        count += detail::to_flag_value(flag);
    }
    output = (count > 0) ? static_cast<T>(count) : T{0};
}

/// Sum a vector of flag representations
/// The flag vector produces a series of strings in a vector,  simple true is represented by a "1",  simple false is by
/// "-1" an if numbers are passed by some fashion they are captured as well so the function just checks for the most
/// common true and false strings then uses stoll to convert the rest for summing
template <typename T,
          enable_if_t<std::is_integral<T>::value && std::is_signed<T>::value, detail::enabler> = detail::dummy>
void sum_flag_vector(const std::vector<std::string> &flags, T &output) {
    int64_t count{0};
    for(auto &flag : flags) {
        count += detail::to_flag_value(flag);
    }
    output = static_cast<T>(count);
}

} // namespace detail
} // namespace CLI

// From CLI/Split.hpp:

namespace CLI {
namespace detail {

// Returns false if not a short option. Otherwise, sets opt name and rest and returns true
inline bool split_short(const std::string &current, std::string &name, std::string &rest) {
    if(current.size() > 1 && current[0] == '-' && valid_first_char(current[1])) {
        name = current.substr(1, 1);
        rest = current.substr(2);
        return true;
    } else
        return false;
}

// Returns false if not a long option. Otherwise, sets opt name and other side of = and returns true
inline bool split_long(const std::string &current, std::string &name, std::string &value) {
    if(current.size() > 2 && current.substr(0, 2) == "--" && valid_first_char(current[2])) {
        auto loc = current.find_first_of('=');
        if(loc != std::string::npos) {
            name = current.substr(2, loc - 2);
            value = current.substr(loc + 1);
        } else {
            name = current.substr(2);
            value = "";
        }
        return true;
    } else
        return false;
}

// Returns false if not a windows style option. Otherwise, sets opt name and value and returns true
inline bool split_windows_style(const std::string &current, std::string &name, std::string &value) {
    if(current.size() > 1 && current[0] == '/' && valid_first_char(current[1])) {
        auto loc = current.find_first_of(':');
        if(loc != std::string::npos) {
            name = current.substr(1, loc - 1);
            value = current.substr(loc + 1);
        } else {
            name = current.substr(1);
            value = "";
        }
        return true;
    } else
        return false;
}

// Splits a string into multiple long and short names
inline std::vector<std::string> split_names(std::string current) {
    std::vector<std::string> output;
    size_t val;
    while((val = current.find(",")) != std::string::npos) {
        output.push_back(trim_copy(current.substr(0, val)));
        current = current.substr(val + 1);
    }
    output.push_back(trim_copy(current));
    return output;
}

/// extract default flag values either {def} or starting with a !
inline std::vector<std::pair<std::string, std::string>> get_default_flag_values(const std::string &str) {
    std::vector<std::string> flags = split_names(str);
    flags.erase(std::remove_if(flags.begin(),
                               flags.end(),
                               [](const std::string &name) {
                                   return ((name.empty()) || (!(((name.find_first_of('{') != std::string::npos) &&
                                                                 (name.back() == '}')) ||
                                                                (name[0] == '!'))));
                               }),
                flags.end());
    std::vector<std::pair<std::string, std::string>> output;
    output.reserve(flags.size());
    for(auto &flag : flags) {
        auto def_start = flag.find_first_of('{');
        std::string defval = "false";
        if((def_start != std::string::npos) && (flag.back() == '}')) {
            defval = flag.substr(def_start + 1);
            defval.pop_back();
            flag.erase(def_start, std::string::npos);
        }
        flag.erase(0, flag.find_first_not_of("-!"));
        output.emplace_back(flag, defval);
    }
    return output;
}

/// Get a vector of short names, one of long names, and a single name
inline std::tuple<std::vector<std::string>, std::vector<std::string>, std::string>
get_names(const std::vector<std::string> &input) {

    std::vector<std::string> short_names;
    std::vector<std::string> long_names;
    std::string pos_name;

    for(std::string name : input) {
        if(name.length() == 0)
            continue;
        else if(name.length() > 1 && name[0] == '-' && name[1] != '-') {
            if(name.length() == 2 && valid_first_char(name[1]))
                short_names.emplace_back(1, name[1]);
            else
                throw BadNameString::OneCharName(name);
        } else if(name.length() > 2 && name.substr(0, 2) == "--") {
            name = name.substr(2);
            if(valid_name_string(name))
                long_names.push_back(name);
            else
                throw BadNameString::BadLongName(name);
        } else if(name == "-" || name == "--") {
            throw BadNameString::DashesOnly(name);
        } else {
            if(pos_name.length() > 0)
                throw BadNameString::MultiPositionalNames(name);
            pos_name = name;
        }
    }

    return std::tuple<std::vector<std::string>, std::vector<std::string>, std::string>(
        short_names, long_names, pos_name);
}

} // namespace detail
} // namespace CLI

// From CLI/ConfigFwd.hpp:

namespace CLI {

class App;

namespace detail {

/// Comma separated join, adds quotes if needed
inline std::string ini_join(std::vector<std::string> args) {
    std::ostringstream s;
    size_t start = 0;
    for(const auto &arg : args) {
        if(start++ > 0)
            s << " ";

        auto it = std::find_if(arg.begin(), arg.end(), [](char ch) { return std::isspace<char>(ch, std::locale()); });
        if(it == arg.end())
            s << arg;
        else if(arg.find_first_of('\"') == std::string::npos)
            s << '\"' << arg << '\"';
        else
            s << '\'' << arg << '\'';
    }

    return s.str();
}

} // namespace detail

/// Holds values to load into Options
struct ConfigItem {
    /// This is the list of parents
    std::vector<std::string> parents;

    /// This is the name
    std::string name;

    /// Listing of inputs
    std::vector<std::string> inputs;

    /// The list of parents and name joined by "."
    std::string fullname() const {
        std::vector<std::string> tmp = parents;
        tmp.emplace_back(name);
        return detail::join(tmp, ".");
    }
};

/// This class provides a converter for configuration files.
class Config {
  protected:
    std::vector<ConfigItem> items;

  public:
    /// Convert an app into a configuration
    virtual std::string to_config(const App *, bool, bool, std::string) const = 0;

    /// Convert a configuration into an app
    virtual std::vector<ConfigItem> from_config(std::istream &) const = 0;

    /// Get a flag value
    virtual std::string to_flag(const ConfigItem &item) const {
        if(item.inputs.size() == 1) {
            return item.inputs.at(0);
        }
        throw ConversionError::TooManyInputsFlag(item.fullname());
    }

    /// Parse a config file, throw an error (ParseError:ConfigParseError or FileError) on failure
    std::vector<ConfigItem> from_file(const std::string &name) {
        std::ifstream input{name};
        if(!input.good())
            throw FileError::Missing(name);

        return from_config(input);
    }

    /// Virtual destructor
    virtual ~Config() = default;
};

/// This converter works with INI files
class ConfigINI : public Config {
  public:
    std::string to_config(const App *, bool default_also, bool write_description, std::string prefix) const override;

    std::vector<ConfigItem> from_config(std::istream &input) const override {
        std::string line;
        std::string section = "default";

        std::vector<ConfigItem> output;

        while(getline(input, line)) {
            std::vector<std::string> items_buffer;

            detail::trim(line);
            size_t len = line.length();
            if(len > 1 && line[0] == '[' && line[len - 1] == ']') {
                section = line.substr(1, len - 2);
            } else if(len > 0 && line[0] != ';') {
                output.emplace_back();
                ConfigItem &out = output.back();

                // Find = in string, split and recombine
                auto pos = line.find('=');
                if(pos != std::string::npos) {
                    out.name = detail::trim_copy(line.substr(0, pos));
                    std::string item = detail::trim_copy(line.substr(pos + 1));
                    items_buffer = detail::split_up(item);
                } else {
                    out.name = detail::trim_copy(line);
                    items_buffer = {"ON"};
                }

                if(detail::to_lower(section) != "default") {
                    out.parents = {section};
                }

                if(out.name.find('.') != std::string::npos) {
                    std::vector<std::string> plist = detail::split(out.name, '.');
                    out.name = plist.back();
                    plist.pop_back();
                    out.parents.insert(out.parents.end(), plist.begin(), plist.end());
                }

                out.inputs.insert(std::end(out.inputs), std::begin(items_buffer), std::end(items_buffer));
            }
        }
        return output;
    }
};

} // namespace CLI

// From CLI/Validators.hpp:

namespace CLI {

class Option;

/// @defgroup validator_group Validators

/// @brief Some validators that are provided
///
/// These are simple `std::string(const std::string&)` validators that are useful. They return
/// a string if the validation fails. A custom struct is provided, as well, with the same user
/// semantics, but with the ability to provide a new type name.
/// @{

///
class Validator {
  protected:
    /// This is the description function, if empty the description_ will be used
    std::function<std::string()> desc_function_{[]() { return std::string{}; }};

    /// This it the base function that is to be called.
    /// Returns a string error message if validation fails.
    std::function<std::string(std::string &)> func_{[](std::string &) { return std::string{}; }};
    /// The name for search purposes of the Validator
    std::string name_;
    /// Enable for Validator to allow it to be disabled if need be
    bool active_{true};
    /// specify that a validator should not modify the input
    bool non_modifying_{false};

  public:
    Validator() = default;
    /// Construct a Validator with just the description string
    explicit Validator(std::string validator_desc) : desc_function_([validator_desc]() { return validator_desc; }) {}
    // Construct Validator from basic information
    Validator(std::function<std::string(std::string &)> op, std::string validator_desc, std::string validator_name = "")
        : desc_function_([validator_desc]() { return validator_desc; }), func_(std::move(op)),
          name_(std::move(validator_name)) {}
    /// Set the Validator operation function
    Validator &operation(std::function<std::string(std::string &)> op) {
        func_ = std::move(op);
        return *this;
    }
    /// This is the required operator for a Validator - provided to help
    /// users (CLI11 uses the member `func` directly)
    std::string operator()(std::string &str) const {
        std::string retstring;
        if(active_) {
            if(non_modifying_) {
                std::string value = str;
                retstring = func_(value);
            } else {
                retstring = func_(str);
            }
        }
        return retstring;
    };

    /// This is the required operator for a Validator - provided to help
    /// users (CLI11 uses the member `func` directly)
    std::string operator()(const std::string &str) const {
        std::string value = str;
        return (active_) ? func_(value) : std::string{};
    };

    /// Specify the type string
    Validator &description(std::string validator_desc) {
        desc_function_ = [validator_desc]() { return validator_desc; };
        return *this;
    }
    /// Generate type description information for the Validator
    std::string get_description() const {
        if(active_) {
            return desc_function_();
        }
        return std::string{};
    }
    /// Specify the type string
    Validator &name(std::string validator_name) {
        name_ = std::move(validator_name);
        return *this;
    }
    /// Get the name of the Validator
    const std::string &get_name() const { return name_; }
    /// Specify whether the Validator is active or not
    Validator &active(bool active_val = true) {
        active_ = active_val;
        return *this;
    }

    /// Specify whether the Validator can be modifying or not
    Validator &non_modifying(bool no_modify = true) {
        non_modifying_ = no_modify;
        return *this;
    }

    /// Get a boolean if the validator is active
    bool get_active() const { return active_; }

    /// Get a boolean if the validator is allowed to modify the input returns true if it can modify the input
    bool get_modifying() const { return !non_modifying_; }

    /// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
    /// same.
    Validator operator&(const Validator &other) const {
        Validator newval;

        newval._merge_description(*this, other, " AND ");

        // Give references (will make a copy in lambda function)
        const std::function<std::string(std::string & filename)> &f1 = func_;
        const std::function<std::string(std::string & filename)> &f2 = other.func_;

        newval.func_ = [f1, f2](std::string &input) {
            std::string s1 = f1(input);
            std::string s2 = f2(input);
            if(!s1.empty() && !s2.empty())
                return std::string("(") + s1 + ") AND (" + s2 + ")";
            else
                return s1 + s2;
        };

        newval.active_ = (active_ & other.active_);
        return newval;
    }

    /// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
    /// same.
    Validator operator|(const Validator &other) const {
        Validator newval;

        newval._merge_description(*this, other, " OR ");

        // Give references (will make a copy in lambda function)
        const std::function<std::string(std::string &)> &f1 = func_;
        const std::function<std::string(std::string &)> &f2 = other.func_;

        newval.func_ = [f1, f2](std::string &input) {
            std::string s1 = f1(input);
            std::string s2 = f2(input);
            if(s1.empty() || s2.empty())
                return std::string();
            else
                return std::string("(") + s1 + ") OR (" + s2 + ")";
        };
        newval.active_ = (active_ & other.active_);
        return newval;
    }

    /// Create a validator that fails when a given validator succeeds
    Validator operator!() const {
        Validator newval;
        const std::function<std::string()> &dfunc1 = desc_function_;
        newval.desc_function_ = [dfunc1]() {
            auto str = dfunc1();
            return (!str.empty()) ? std::string("NOT ") + str : std::string{};
        };
        // Give references (will make a copy in lambda function)
        const std::function<std::string(std::string & res)> &f1 = func_;

        newval.func_ = [f1, dfunc1](std::string &test) -> std::string {
            std::string s1 = f1(test);
            if(s1.empty()) {
                return std::string("check ") + dfunc1() + " succeeded improperly";
            } else
                return std::string{};
        };
        newval.active_ = active_;
        return newval;
    }

  private:
    void _merge_description(const Validator &val1, const Validator &val2, const std::string &merger) {

        const std::function<std::string()> &dfunc1 = val1.desc_function_;
        const std::function<std::string()> &dfunc2 = val2.desc_function_;

        desc_function_ = [=]() {
            std::string f1 = dfunc1();
            std::string f2 = dfunc2();
            if((f1.empty()) || (f2.empty())) {
                return f1 + f2;
            }
            return std::string("(") + f1 + ")" + merger + "(" + f2 + ")";
        };
    }
};

/// Class wrapping some of the accessors of Validator
class CustomValidator : public Validator {
  public:
};
// The implementation of the built in validators is using the Validator class;
// the user is only expected to use the const (static) versions (since there's no setup).
// Therefore, this is in detail.
namespace detail {

/// Check for an existing file (returns error message if check fails)
class ExistingFileValidator : public Validator {
  public:
    ExistingFileValidator() : Validator("FILE") {
        func_ = [](std::string &filename) {
            struct stat buffer;
            bool exist = stat(filename.c_str(), &buffer) == 0;
            bool is_dir = (buffer.st_mode & S_IFDIR) != 0;
            if(!exist) {
                return "File does not exist: " + filename;
            } else if(is_dir) {
                return "File is actually a directory: " + filename;
            }
            return std::string();
        };
    }
};

/// Check for an existing directory (returns error message if check fails)
class ExistingDirectoryValidator : public Validator {
  public:
    ExistingDirectoryValidator() : Validator("DIR") {
        func_ = [](std::string &filename) {
            struct stat buffer;
            bool exist = stat(filename.c_str(), &buffer) == 0;
            bool is_dir = (buffer.st_mode & S_IFDIR) != 0;
            if(!exist) {
                return "Directory does not exist: " + filename;
            } else if(!is_dir) {
                return "Directory is actually a file: " + filename;
            }
            return std::string();
        };
    }
};

/// Check for an existing path
class ExistingPathValidator : public Validator {
  public:
    ExistingPathValidator() : Validator("PATH(existing)") {
        func_ = [](std::string &filename) {
            struct stat buffer;
            bool const exist = stat(filename.c_str(), &buffer) == 0;
            if(!exist) {
                return "Path does not exist: " + filename;
            }
            return std::string();
        };
    }
};

/// Check for an non-existing path
class NonexistentPathValidator : public Validator {
  public:
    NonexistentPathValidator() : Validator("PATH(non-existing)") {
        func_ = [](std::string &filename) {
            struct stat buffer;
            bool exist = stat(filename.c_str(), &buffer) == 0;
            if(exist) {
                return "Path already exists: " + filename;
            }
            return std::string();
        };
    }
};

/// Validate the given string is a legal ipv4 address
class IPV4Validator : public Validator {
  public:
    IPV4Validator() : Validator("IPV4") {
        func_ = [](std::string &ip_addr) {
            auto result = CLI::detail::split(ip_addr, '.');
            if(result.size() != 4) {
                return "Invalid IPV4 address must have four parts " + ip_addr;
            }
            int num;
            bool retval = true;
            for(const auto &var : result) {
                retval &= detail::lexical_cast(var, num);
                if(!retval) {
                    return "Failed parsing number " + var;
                }
                if(num < 0 || num > 255) {
                    return "Each IP number must be between 0 and 255 " + var;
                }
            }
            return std::string();
        };
    }
};

/// Validate the argument is a number and greater than or equal to 0
class PositiveNumber : public Validator {
  public:
    PositiveNumber() : Validator("POSITIVE") {
        func_ = [](std::string &number_str) {
            int number;
            if(!detail::lexical_cast(number_str, number)) {
                return "Failed parsing number " + number_str;
            }
            if(number < 0) {
                return "Number less then 0 " + number_str;
            }
            return std::string();
        };
    }
};

/// Validate the argument is a number and greater than or equal to 0
class Number : public Validator {
  public:
    Number() : Validator("NUMBER") {
        func_ = [](std::string &number_str) {
            double number;
            if(!detail::lexical_cast(number_str, number)) {
                return "Failed parsing as a number " + number_str;
            }
            return std::string();
        };
    }
};

} // namespace detail

// Static is not needed here, because global const implies static.

/// Check for existing file (returns error message if check fails)
const detail::ExistingFileValidator ExistingFile;

/// Check for an existing directory (returns error message if check fails)
const detail::ExistingDirectoryValidator ExistingDirectory;

/// Check for an existing path
const detail::ExistingPathValidator ExistingPath;

/// Check for an non-existing path
const detail::NonexistentPathValidator NonexistentPath;

/// Check for an IP4 address
const detail::IPV4Validator ValidIPV4;

/// Check for a positive number
const detail::PositiveNumber PositiveNumber;

/// Check for a number
const detail::Number Number;

/// Produce a range (factory). Min and max are inclusive.
class Range : public Validator {
  public:
    /// This produces a range with min and max inclusive.
    ///
    /// Note that the constructor is templated, but the struct is not, so C++17 is not
    /// needed to provide nice syntax for Range(a,b).
    template <typename T> Range(T min, T max) {
        std::stringstream out;
        out << detail::type_name<T>() << " in [" << min << " - " << max << "]";
        description(out.str());

        func_ = [min, max](std::string &input) {
            T val;
            bool converted = detail::lexical_cast(input, val);
            if((!converted) || (val < min || val > max))
                return "Value " + input + " not in range " + std::to_string(min) + " to " + std::to_string(max);

            return std::string();
        };
    }

    /// Range of one value is 0 to value
    template <typename T> explicit Range(T max) : Range(static_cast<T>(0), max) {}
};

/// Produce a bounded range (factory). Min and max are inclusive.
class Bound : public Validator {
  public:
    /// This bounds a value with min and max inclusive.
    ///
    /// Note that the constructor is templated, but the struct is not, so C++17 is not
    /// needed to provide nice syntax for Range(a,b).
    template <typename T> Bound(T min, T max) {
        std::stringstream out;
        out << detail::type_name<T>() << " bounded to [" << min << " - " << max << "]";
        description(out.str());

        func_ = [min, max](std::string &input) {
            T val;
            bool converted = detail::lexical_cast(input, val);
            if(!converted) {
                return "Value " + input + " could not be converted";
            }
            if(val < min)
                input = detail::as_string(min);
            else if(val > max)
                input = detail::as_string(max);

            return std::string();
        };
    }

    /// Range of one value is 0 to value
    template <typename T> explicit Bound(T max) : Bound(static_cast<T>(0), max) {}
};

namespace detail {
template <typename T,
          enable_if_t<is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
auto smart_deref(T value) -> decltype(*value) {
    return *value;
}

template <
    typename T,
    enable_if_t<!is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
typename std::remove_reference<T>::type &smart_deref(T &value) {
    return value;
}
/// Generate a string representation of a set
template <typename T> std::string generate_set(const T &set) {
    using element_t = typename detail::element_type<T>::type;
    using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
    std::string out(1, '{');
    out.append(detail::join(detail::smart_deref(set),
                            [](const iteration_type_t &v) { return detail::pair_adaptor<element_t>::first(v); },
                            ","));
    out.push_back('}');
    return out;
}

/// Generate a string representation of a map
template <typename T> std::string generate_map(const T &map, bool key_only = false) {
    using element_t = typename detail::element_type<T>::type;
    using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
    std::string out(1, '{');
    out.append(detail::join(detail::smart_deref(map),
                            [key_only](const iteration_type_t &v) {
                                auto res = detail::as_string(detail::pair_adaptor<element_t>::first(v));
                                if(!key_only) {
                                    res += "->" + detail::as_string(detail::pair_adaptor<element_t>::second(v));
                                }
                                return res;
                            },
                            ","));
    out.push_back('}');
    return out;
}

template <typename> struct sfinae_true : std::true_type {};
/// Function to check for the existence of a member find function which presumably is more efficient than looping over
/// everything
template <typename T, typename V>
static auto test_find(int) -> sfinae_true<decltype(std::declval<T>().find(std::declval<V>()))>;
template <typename, typename V> static auto test_find(long) -> std::false_type;

template <typename T, typename V> struct has_find : decltype(test_find<T, V>(0)) {};

/// A search function
template <typename T, typename V, enable_if_t<!has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    using element_t = typename detail::element_type<T>::type;
    auto &setref = detail::smart_deref(set);
    auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) {
        return (detail::pair_adaptor<element_t>::first(v) == val);
    });
    return {(it != std::end(setref)), it};
}

/// A search function that uses the built in find function
template <typename T, typename V, enable_if_t<has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    auto &setref = detail::smart_deref(set);
    auto it = setref.find(val);
    return {(it != std::end(setref)), it};
}

/// A search function with a filter function
template <typename T, typename V>
auto search(const T &set, const V &val, const std::function<V(V)> &filter_function)
    -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
    using element_t = typename detail::element_type<T>::type;
    // do the potentially faster first search
    auto res = search(set, val);
    if((res.first) || (!(filter_function))) {
        return res;
    }
    // if we haven't found it do the longer linear search with all the element translations
    auto &setref = detail::smart_deref(set);
    auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) {
        V a = detail::pair_adaptor<element_t>::first(v);
        a = filter_function(a);
        return (a == val);
    });
    return {(it != std::end(setref)), it};
}

/// Performs a *= b; if it doesn't cause integer overflow. Returns false otherwise.
template <typename T> typename std::enable_if<std::is_integral<T>::value, bool>::type checked_multiply(T &a, T b) {
    if(a == 0 || b == 0) {
        a *= b;
        return true;
    }
    T c = a * b;
    if(c / a != b) {
        return false;
    }
    a = c;
    return true;
}

/// Performs a *= b; if it doesn't equal infinity. Returns false otherwise.
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type checked_multiply(T &a, T b) {
    T c = a * b;
    if(std::isinf(c) && !std::isinf(a) && !std::isinf(b)) {
        return false;
    }
    a = c;
    return true;
}

} // namespace detail
/// Verify items are in a set
class IsMember : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction using an initializer list
    template <typename T, typename... Args>
    explicit IsMember(std::initializer_list<T> values, Args &&... args)
        : IsMember(std::vector<T>(values), std::forward<Args>(args)...) {}

    /// This checks to see if an item is in a set (empty function)
    template <typename T> explicit IsMember(T &&set) : IsMember(std::forward<T>(set), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit IsMember(T set, F filter_function) {

        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;            // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map

        using local_item_t = typename IsMemberType<item_t>::type; // This will convert bad types to good ones
                                                                  // (const char * to std::string)

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        // This is the type name for help, it will take the current version of the set contents
        desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); };

        // This is the function that validates
        // It stores a copy of the set pointer-like, so shared_ptr will stay alive
        func_ = [set, filter_fn](std::string &input) {
            local_item_t b;
            if(!detail::lexical_cast(input, b)) {
                throw ValidationError(input); // name is added later
            }
            if(filter_fn) {
                b = filter_fn(b);
            }
            auto res = detail::search(set, b, filter_fn);
            if(res.first) {
                // Make sure the version in the input string is identical to the one in the set
                if(filter_fn) {
                    input = detail::as_string(detail::pair_adaptor<element_t>::first(*(res.second)));
                }

                // Return empty error string (success)
                return std::string{};
            }

            // If you reach this point, the result was not found
            std::string out(" not in ");
            out += detail::generate_set(detail::smart_deref(set));
            return out;
        };
    }

    /// You can pass in as many filter functions as you like, they nest (string only currently)
    template <typename T, typename... Args>
    IsMember(T &&set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&... other)
        : IsMember(std::forward<T>(set),
                   [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
                   other...) {}
};

/// definition of the default transformation object
template <typename T> using TransformPairs = std::vector<std::pair<std::string, T>>;

/// Translate named items to other or a value set
class Transformer : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction
    template <typename... Args>
    explicit Transformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&... args)
        : Transformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}

    /// direct map of std::string to std::string
    template <typename T> explicit Transformer(T &&mapping) : Transformer(std::forward<T>(mapping), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit Transformer(T mapping, F filter_function) {

        static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
                      "mapping must produce value pairs");
        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;            // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
        using local_item_t = typename IsMemberType<item_t>::type;            // This will convert bad types to good ones
                                                                             // (const char * to std::string)

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        // This is the type name for help, it will take the current version of the set contents
        desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); };

        func_ = [mapping, filter_fn](std::string &input) {
            local_item_t b;
            if(!detail::lexical_cast(input, b)) {
                return std::string();
                // there is no possible way we can match anything in the mapping if we can't convert so just return
            }
            if(filter_fn) {
                b = filter_fn(b);
            }
            auto res = detail::search(mapping, b, filter_fn);
            if(res.first) {
                input = detail::as_string(detail::pair_adaptor<element_t>::second(*res.second));
            }
            return std::string{};
        };
    }

    /// You can pass in as many filter functions as you like, they nest
    template <typename T, typename... Args>
    Transformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&... other)
        : Transformer(std::forward<T>(mapping),
                      [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
                      other...) {}
};

/// translate named items to other or a value set
class CheckedTransformer : public Validator {
  public:
    using filter_fn_t = std::function<std::string(std::string)>;

    /// This allows in-place construction
    template <typename... Args>
    explicit CheckedTransformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&... args)
        : CheckedTransformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}

    /// direct map of std::string to std::string
    template <typename T> explicit CheckedTransformer(T mapping) : CheckedTransformer(std::move(mapping), nullptr) {}

    /// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
    /// both sides of the comparison before computing the comparison.
    template <typename T, typename F> explicit CheckedTransformer(T mapping, F filter_function) {

        static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
                      "mapping must produce value pairs");
        // Get the type of the contained item - requires a container have ::value_type
        // if the type does not have first_type and second_type, these are both value_type
        using element_t = typename detail::element_type<T>::type;            // Removes (smart) pointers if needed
        using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
        using local_item_t = typename IsMemberType<item_t>::type;            // This will convert bad types to good ones
                                                                             // (const char * to std::string)
        using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair //
                                                                                       // the type of the object pair

        // Make a local copy of the filter function, using a std::function if not one already
        std::function<local_item_t(local_item_t)> filter_fn = filter_function;

        auto tfunc = [mapping]() {
            std::string out("value in ");
            out += detail::generate_map(detail::smart_deref(mapping)) + " OR {";
            out += detail::join(
                detail::smart_deref(mapping),
                [](const iteration_type_t &v) { return detail::as_string(detail::pair_adaptor<element_t>::second(v)); },
                ",");
            out.push_back('}');
            return out;
        };

        desc_function_ = tfunc;

        func_ = [mapping, tfunc, filter_fn](std::string &input) {
            local_item_t b;
            bool converted = detail::lexical_cast(input, b);
            if(converted) {
                if(filter_fn) {
                    b = filter_fn(b);
                }
                auto res = detail::search(mapping, b, filter_fn);
                if(res.first) {
                    input = detail::as_string(detail::pair_adaptor<element_t>::second(*res.second));
                    return std::string{};
                }
            }
            for(const auto &v : detail::smart_deref(mapping)) {
                auto output_string = detail::as_string(detail::pair_adaptor<element_t>::second(v));
                if(output_string == input) {
                    return std::string();
                }
            }

            return "Check " + input + " " + tfunc() + " FAILED";
        };
    }

    /// You can pass in as many filter functions as you like, they nest
    template <typename T, typename... Args>
    CheckedTransformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&... other)
        : CheckedTransformer(std::forward<T>(mapping),
                             [filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
                             other...) {}
};

/// Helper function to allow ignore_case to be passed to IsMember or Transform
inline std::string ignore_case(std::string item) { return detail::to_lower(item); }

/// Helper function to allow ignore_underscore to be passed to IsMember or Transform
inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); }

/// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform
inline std::string ignore_space(std::string item) {
    item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item));
    item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item));
    return item;
}

/// Multiply a number by a factor using given mapping.
/// Can be used to write transforms for SIZE or DURATION inputs.
///
/// Example:
///   With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}`
///   one can recognize inputs like "100", "12kb", "100 MB",
///   that will be automatically transformed to 100, 14448, 104857600.
///
/// Output number type matches the type in the provided mapping.
/// Therefore, if it is required to interpret real inputs like "0.42 s",
/// the mapping should be of a type <string, float> or <string, double>.
class AsNumberWithUnit : public Validator {
  public:
    /// Adjust AsNumberWithUnit behavior.
    /// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched.
    /// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError
    ///   if UNIT_REQUIRED is set and unit literal is not found.
    enum Options {
        CASE_SENSITIVE = 0,
        CASE_INSENSITIVE = 1,
        UNIT_OPTIONAL = 0,
        UNIT_REQUIRED = 2,
        DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL
    };

    template <typename Number>
    explicit AsNumberWithUnit(std::map<std::string, Number> mapping,
                              Options opts = DEFAULT,
                              const std::string &unit_name = "UNIT") {
        description(generate_description<Number>(unit_name, opts));
        validate_mapping(mapping, opts);

        // transform function
        func_ = [mapping, opts](std::string &input) -> std::string {
            Number num;

            detail::rtrim(input);
            if(input.empty()) {
                throw ValidationError("Input is empty");
            }

            // Find split position between number and prefix
            auto unit_begin = input.end();
            while(unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale())) {
                --unit_begin;
            }

            std::string unit{unit_begin, input.end()};
            input.resize(static_cast<size_t>(std::distance(input.begin(), unit_begin)));
            detail::trim(input);

            if(opts & UNIT_REQUIRED && unit.empty()) {
                throw ValidationError("Missing mandatory unit");
            }
            if(opts & CASE_INSENSITIVE) {
                unit = detail::to_lower(unit);
            }

            bool converted = detail::lexical_cast(input, num);
            if(!converted) {
                throw ValidationError("Value " + input + " could not be converted to " + detail::type_name<Number>());
            }

            if(unit.empty()) {
                // No need to modify input if no unit passed
                return {};
            }

            // find corresponding factor
            auto it = mapping.find(unit);
            if(it == mapping.end()) {
                throw ValidationError(unit +
                                      " unit not recognized. "
                                      "Allowed values: " +
                                      detail::generate_map(mapping, true));
            }

            // perform safe multiplication
            bool ok = detail::checked_multiply(num, it->second);
            if(!ok) {
                throw ValidationError(detail::as_string(num) + " multiplied by " + unit +
                                      " factor would cause number overflow. Use smaller value.");
            }
            input = detail::as_string(num);

            return {};
        };
    }

  private:
    /// Check that mapping contains valid units.
    /// Update mapping for CASE_INSENSITIVE mode.
    template <typename Number> static void validate_mapping(std::map<std::string, Number> &mapping, Options opts) {
        for(auto &kv : mapping) {
            if(kv.first.empty()) {
                throw ValidationError("Unit must not be empty.");
            }
            if(!detail::isalpha(kv.first)) {
                throw ValidationError("Unit must contain only letters.");
            }
        }

        // make all units lowercase if CASE_INSENSITIVE
        if(opts & CASE_INSENSITIVE) {
            std::map<std::string, Number> lower_mapping;
            for(auto &kv : mapping) {
                auto s = detail::to_lower(kv.first);
                if(lower_mapping.count(s)) {
                    throw ValidationError("Several matching lowercase unit representations are found: " + s);
                }
                lower_mapping[detail::to_lower(kv.first)] = kv.second;
            }
            mapping = std::move(lower_mapping);
        }
    }

    /// Generate description like this: NUMBER [UNIT]
    template <typename Number> static std::string generate_description(const std::string &name, Options opts) {
        std::stringstream out;
        out << detail::type_name<Number>() << ' ';
        if(opts & UNIT_REQUIRED) {
            out << name;
        } else {
            out << '[' << name << ']';
        }
        return out.str();
    }
};

/// Converts a human-readable size string (with unit literal) to uin64_t size.
/// Example:
///   "100" => 100
///   "1 b" => 100
///   "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024)
///   "10 KB" => 10240
///   "10 kb" => 10240
///   "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024)
///   "10kb" => 10240
///   "2 MB" => 2097152
///   "2 EiB" => 2^61 // Units up to exibyte are supported
class AsSizeValue : public AsNumberWithUnit {
  public:
    using result_t = uint64_t;

    /// If kb_is_1000 is true,
    /// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024
    /// (same applies to higher order units as well).
    /// Otherwise, interpret all literals as factors of 1024.
    /// The first option is formally correct, but
    /// the second interpretation is more wide-spread
    /// (see https://en.wikipedia.org/wiki/Binary_prefix).
    explicit AsSizeValue(bool kb_is_1000) : AsNumberWithUnit(get_mapping(kb_is_1000)) {
        if(kb_is_1000) {
            description("SIZE [b, kb(=1000b), kib(=1024b), ...]");
        } else {
            description("SIZE [b, kb(=1024b), ...]");
        }
    }

  private:
    /// Get <size unit, factor> mapping
    static std::map<std::string, result_t> init_mapping(bool kb_is_1000) {
        std::map<std::string, result_t> m;
        result_t k_factor = kb_is_1000 ? 1000 : 1024;
        result_t ki_factor = 1024;
        result_t k = 1;
        result_t ki = 1;
        m["b"] = 1;
        for(std::string p : {"k", "m", "g", "t", "p", "e"}) {
            k *= k_factor;
            ki *= ki_factor;
            m[p] = k;
            m[p + "b"] = k;
            m[p + "i"] = ki;
            m[p + "ib"] = ki;
        }
        return m;
    }

    /// Cache calculated mapping
    static std::map<std::string, result_t> get_mapping(bool kb_is_1000) {
        if(kb_is_1000) {
            static auto m = init_mapping(true);
            return m;
        } else {
            static auto m = init_mapping(false);
            return m;
        }
    }
};

namespace detail {
/// Split a string into a program name and command line arguments
/// the string is assumed to contain a file name followed by other arguments
/// the return value contains is a pair with the first argument containing the program name and the second
/// everything else.
inline std::pair<std::string, std::string> split_program_name(std::string commandline) {
    // try to determine the programName
    std::pair<std::string, std::string> vals;
    trim(commandline);
    auto esp = commandline.find_first_of(' ', 1);
    while(!ExistingFile(commandline.substr(0, esp)).empty()) {
        esp = commandline.find_first_of(' ', esp + 1);
        if(esp == std::string::npos) {
            // if we have reached the end and haven't found a valid file just assume the first argument is the
            // program name
            esp = commandline.find_first_of(' ', 1);
            break;
        }
    }
    vals.first = commandline.substr(0, esp);
    rtrim(vals.first);
    // strip the program name
    vals.second = (esp != std::string::npos) ? commandline.substr(esp + 1) : std::string{};
    ltrim(vals.second);
    return vals;
}

} // namespace detail
/// @}

} // namespace CLI

// From CLI/FormatterFwd.hpp:

namespace CLI {

class Option;
class App;

/// This enum signifies the type of help requested
///
/// This is passed in by App; all user classes must accept this as
/// the second argument.

enum class AppFormatMode {
    Normal, //< The normal, detailed help
    All,    //< A fully expanded help
    Sub,    //< Used when printed as part of expanded subcommand
};

/// This is the minimum requirements to run a formatter.
///
/// A user can subclass this is if they do not care at all
/// about the structure in CLI::Formatter.
class FormatterBase {
  protected:
    /// @name Options
    ///@{

    /// The width of the first column
    size_t column_width_{30};

    /// @brief The required help printout labels (user changeable)
    /// Values are Needs, Excludes, etc.
    std::map<std::string, std::string> labels_;

    ///@}
    /// @name Basic
    ///@{

  public:
    FormatterBase() = default;
    FormatterBase(const FormatterBase &) = default;
    FormatterBase(FormatterBase &&) = default;

    /// Adding a destructor in this form to work around bug in GCC 4.7
    virtual ~FormatterBase() noexcept {} // NOLINT(modernize-use-equals-default)

    /// This is the key method that puts together help
    virtual std::string make_help(const App *, std::string, AppFormatMode) const = 0;

    ///@}
    /// @name Setters
    ///@{

    /// Set the "REQUIRED" label
    void label(std::string key, std::string val) { labels_[key] = val; }

    /// Set the column width
    void column_width(size_t val) { column_width_ = val; }

    ///@}
    /// @name Getters
    ///@{

    /// Get the current value of a name (REQUIRED, etc.)
    std::string get_label(std::string key) const {
        if(labels_.find(key) == labels_.end())
            return key;
        else
            return labels_.at(key);
    }

    /// Get the current column width
    size_t get_column_width() const { return column_width_; }

    ///@}
};

/// This is a specialty override for lambda functions
class FormatterLambda final : public FormatterBase {
    using funct_t = std::function<std::string(const App *, std::string, AppFormatMode)>;

    /// The lambda to hold and run
    funct_t lambda_;

  public:
    /// Create a FormatterLambda with a lambda function
    explicit FormatterLambda(funct_t funct) : lambda_(std::move(funct)) {}

    /// Adding a destructor (mostly to make GCC 4.7 happy)
    ~FormatterLambda() noexcept override {} // NOLINT(modernize-use-equals-default)

    /// This will simply call the lambda function
    std::string make_help(const App *app, std::string name, AppFormatMode mode) const override {
        return lambda_(app, name, mode);
    }
};

/// This is the default Formatter for CLI11. It pretty prints help output, and is broken into quite a few
/// overridable methods, to be highly customizable with minimal effort.
class Formatter : public FormatterBase {
  public:
    Formatter() = default;
    Formatter(const Formatter &) = default;
    Formatter(Formatter &&) = default;

    /// @name Overridables
    ///@{

    /// This prints out a group of options with title
    ///
    virtual std::string make_group(std::string group, bool is_positional, std::vector<const Option *> opts) const;

    /// This prints out just the positionals "group"
    virtual std::string make_positionals(const App *app) const;

    /// This prints out all the groups of options
    std::string make_groups(const App *app, AppFormatMode mode) const;

    /// This prints out all the subcommands
    virtual std::string make_subcommands(const App *app, AppFormatMode mode) const;

    /// This prints out a subcommand
    virtual std::string make_subcommand(const App *sub) const;

    /// This prints out a subcommand in help-all
    virtual std::string make_expanded(const App *sub) const;

    /// This prints out all the groups of options
    virtual std::string make_footer(const App *app) const;

    /// This displays the description line
    virtual std::string make_description(const App *app) const;

    /// This displays the usage line
    virtual std::string make_usage(const App *app, std::string name) const;

    /// This puts everything together
    std::string make_help(const App *, std::string, AppFormatMode) const override;

    ///@}
    /// @name Options
    ///@{

    /// This prints out an option help line, either positional or optional form
    virtual std::string make_option(const Option *opt, bool is_positional) const {
        std::stringstream out;
        detail::format_help(
            out, make_option_name(opt, is_positional) + make_option_opts(opt), make_option_desc(opt), column_width_);
        return out.str();
    }

    /// @brief This is the name part of an option, Default: left column
    virtual std::string make_option_name(const Option *, bool) const;

    /// @brief This is the options part of the name, Default: combined into left column
    virtual std::string make_option_opts(const Option *) const;

    /// @brief This is the description. Default: Right column, on new line if left column too large
    virtual std::string make_option_desc(const Option *) const;

    /// @brief This is used to print the name on the USAGE line
    virtual std::string make_option_usage(const Option *opt) const;

    ///@}
};

} // namespace CLI

// From CLI/Option.hpp:

namespace CLI {

using results_t = std::vector<std::string>;
using callback_t = std::function<bool(results_t)>;

class Option;
class App;

using Option_p = std::unique_ptr<Option>;

enum class MultiOptionPolicy : char { Throw, TakeLast, TakeFirst, Join };

/// This is the CRTP base class for Option and OptionDefaults. It was designed this way
/// to share parts of the class; an OptionDefaults can copy to an Option.
template <typename CRTP> class OptionBase {
    friend App;

  protected:
    /// The group membership
    std::string group_ = std::string("Options");

    /// True if this is a required option
    bool required_{false};

    /// Ignore the case when matching (option, not value)
    bool ignore_case_{false};

    /// Ignore underscores when matching (option, not value)
    bool ignore_underscore_{false};

    /// Allow this option to be given in a configuration file
    bool configurable_{true};

    /// Disable overriding flag values with '=value'
    bool disable_flag_override_{false};

    /// Specify a delimiter character for vector arguments
    char delimiter_{'\0'};

    /// Automatically capture default value
    bool always_capture_default_{false};

    /// Policy for multiple arguments when `expected_ == 1`  (can be set on bool flags, too)
    MultiOptionPolicy multi_option_policy_{MultiOptionPolicy::Throw};

    /// Copy the contents to another similar class (one based on OptionBase)
    template <typename T> void copy_to(T *other) const {
        other->group(group_);
        other->required(required_);
        other->ignore_case(ignore_case_);
        other->ignore_underscore(ignore_underscore_);
        other->configurable(configurable_);
        other->disable_flag_override(disable_flag_override_);
        other->delimiter(delimiter_);
        other->always_capture_default(always_capture_default_);
        other->multi_option_policy(multi_option_policy_);
    }

  public:
    // setters

    /// Changes the group membership
    CRTP *group(std::string name) {
        group_ = name;
        return static_cast<CRTP *>(this);
    }

    /// Set the option as required
    CRTP *required(bool value = true) {
        required_ = value;
        return static_cast<CRTP *>(this);
    }

    /// Support Plumbum term
    CRTP *mandatory(bool value = true) { return required(value); }

    CRTP *always_capture_default(bool value = true) {
        always_capture_default_ = value;
        return static_cast<CRTP *>(this);
    }

    // Getters

    /// Get the group of this option
    const std::string &get_group() const { return group_; }

    /// True if this is a required option
    bool get_required() const { return required_; }

    /// The status of ignore case
    bool get_ignore_case() const { return ignore_case_; }

    /// The status of ignore_underscore
    bool get_ignore_underscore() const { return ignore_underscore_; }

    /// The status of configurable
    bool get_configurable() const { return configurable_; }

    /// The status of configurable
    bool get_disable_flag_override() const { return disable_flag_override_; }

    /// Get the current delimeter char
    char get_delimiter() const { return delimiter_; }

    /// Return true if this will automatically capture the default value for help printing
    bool get_always_capture_default() const { return always_capture_default_; }

    /// The status of the multi option policy
    MultiOptionPolicy get_multi_option_policy() const { return multi_option_policy_; }

    // Shortcuts for multi option policy

    /// Set the multi option policy to take last
    CRTP *take_last() {
        auto self = static_cast<CRTP *>(this);
        self->multi_option_policy(MultiOptionPolicy::TakeLast);
        return self;
    }

    /// Set the multi option policy to take last
    CRTP *take_first() {
        auto self = static_cast<CRTP *>(this);
        self->multi_option_policy(MultiOptionPolicy::TakeFirst);
        return self;
    }

    /// Set the multi option policy to take last
    CRTP *join() {
        auto self = static_cast<CRTP *>(this);
        self->multi_option_policy(MultiOptionPolicy::Join);
        return self;
    }

    /// Allow in a configuration file
    CRTP *configurable(bool value = true) {
        configurable_ = value;
        return static_cast<CRTP *>(this);
    }

    /// Allow in a configuration file
    CRTP *delimiter(char value = '\0') {
        delimiter_ = value;
        return static_cast<CRTP *>(this);
    }
};

/// This is a version of OptionBase that only supports setting values,
/// for defaults. It is stored as the default option in an App.
class OptionDefaults : public OptionBase<OptionDefaults> {
  public:
    OptionDefaults() = default;

    // Methods here need a different implementation if they are Option vs. OptionDefault

    /// Take the last argument if given multiple times
    OptionDefaults *multi_option_policy(MultiOptionPolicy value = MultiOptionPolicy::Throw) {
        multi_option_policy_ = value;
        return this;
    }

    /// Ignore the case of the option name
    OptionDefaults *ignore_case(bool value = true) {
        ignore_case_ = value;
        return this;
    }

    /// Ignore underscores in the option name
    OptionDefaults *ignore_underscore(bool value = true) {
        ignore_underscore_ = value;
        return this;
    }

    /// Disable overriding flag values with an '=<value>' segment
    OptionDefaults *disable_flag_override(bool value = true) {
        disable_flag_override_ = value;
        return this;
    }

    /// set a delimiter character to split up single arguments to treat as multiple inputs
    OptionDefaults *delimiter(char value = '\0') {
        delimiter_ = value;
        return this;
    }
};

class Option : public OptionBase<Option> {
    friend App;

  protected:
    /// @name Names
    ///@{

    /// A list of the short names (`-a`) without the leading dashes
    std::vector<std::string> snames_;

    /// A list of the long names (`--a`) without the leading dashes
    std::vector<std::string> lnames_;

    /// A list of the flag names with the appropriate default value, the first part of the pair should be duplicates of
    /// what is in snames or lnames but will trigger a particular response on a flag
    std::vector<std::pair<std::string, std::string>> default_flag_values_;

    /// a list of flag names with specified default values;
    std::vector<std::string> fnames_;

    /// A positional name
    std::string pname_;

    /// If given, check the environment for this option
    std::string envname_;

    ///@}
    /// @name Help
    ///@{

    /// The description for help strings
    std::string description_;

    /// A human readable default value, either manually set, captured, or captured by default
    std::string default_str_;

    /// A human readable type value, set when App creates this
    ///
    /// This is a lambda function so "types" can be dynamic, such as when a set prints its contents.
    std::function<std::string()> type_name_{[]() { return std::string(); }};

    /// Run this function to capture a default (ignore if empty)
    std::function<std::string()> default_function_;

    ///@}
    /// @name Configuration
    ///@{

    /// The number of arguments that make up one option. -1=unlimited (vector-like), 0=flag, 1=normal option,
    /// 2=complex/pair, etc. Set only when the option is created; this is intrinsic to the type. Eventually, -2 may mean
    /// vector of pairs.
    int type_size_{1};

    /// The number of expected values, type_size_ must be < 0. Ignored for flag. N < 0 means at least -N values.
    int expected_{1};

    /// A list of validators to run on each value parsed
    std::vector<Validator> validators_;

    /// A list of options that are required with this option
    std::set<Option *> needs_;

    /// A list of options that are excluded with this option
    std::set<Option *> excludes_;

    ///@}
    /// @name Other
    ///@{

    /// Remember the parent app
    App *parent_;

    /// Options store a callback to do all the work
    callback_t callback_;

    ///@}
    /// @name Parsing results
    ///@{

    /// Results of parsing
    results_t results_;

    /// Whether the callback has run (needed for INI parsing)
    bool callback_run_{false};

    ///@}

    /// Making an option by hand is not defined, it must be made by the App class
    Option(std::string option_name,
           std::string option_description,
           std::function<bool(results_t)> callback,
           App *parent)
        : description_(std::move(option_description)), parent_(parent), callback_(std::move(callback)) {
        std::tie(snames_, lnames_, pname_) = detail::get_names(detail::split_names(option_name));
    }

  public:
    /// @name Basic
    ///@{

    /// Count the total number of times an option was passed
    size_t count() const { return results_.size(); }

    /// True if the option was not passed
    size_t empty() const { return results_.empty(); }

    /// This class is true if option is passed.
    operator bool() const { return !empty(); }

    /// Clear the parsed results (mostly for testing)
    void clear() { results_.clear(); }

    ///@}
    /// @name Setting options
    ///@{

    /// Set the number of expected arguments (Flags don't use this)
    Option *expected(int value) {

        // Break if this is a flag
        if(type_size_ == 0)
            throw IncorrectConstruction::SetFlag(get_name(true, true));

        // Setting 0 is not allowed
        else if(value == 0)
            throw IncorrectConstruction::Set0Opt(get_name());

        // No change is okay, quit now
        else if(expected_ == value)
            return this;

        // Type must be a vector
        else if(type_size_ >= 0)
            throw IncorrectConstruction::ChangeNotVector(get_name());

        // TODO: Can support multioption for non-1 values (except for join)
        else if(value != 1 && multi_option_policy_ != MultiOptionPolicy::Throw)
            throw IncorrectConstruction::AfterMultiOpt(get_name());

        expected_ = value;
        return this;
    }

    /// Adds a Validator with a built in type name
    Option *check(Validator validator, std::string validator_name = "") {
        validator.non_modifying();
        validators_.push_back(std::move(validator));
        if(!validator_name.empty())
            validators_.front().name(validator_name);
        return this;
    }

    /// Adds a Validator. Takes a const string& and returns an error message (empty if conversion/check is okay).
    Option *check(std::function<std::string(const std::string &)> validator,
                  std::string validator_description = "",
                  std::string validator_name = "") {
        validators_.emplace_back(validator, std::move(validator_description), std::move(validator_name));
        validators_.back().non_modifying();
        return this;
    }

    /// Adds a transforming validator with a built in type name
    Option *transform(Validator validator, std::string validator_name = "") {
        validators_.insert(validators_.begin(), std::move(validator));
        if(!validator_name.empty())
            validators_.front().name(validator_name);
        return this;
    }

    /// Adds a validator-like function that can change result
    Option *transform(std::function<std::string(std::string)> func,
                      std::string transform_description = "",
                      std::string transform_name = "") {
        validators_.insert(validators_.begin(),
                           Validator(
                               [func](std::string &val) {
                                   val = func(val);
                                   return std::string{};
                               },
                               std::move(transform_description),
                               std::move(transform_name)));

        return this;
    }

    /// Adds a user supplied function to run on each item passed in (communicate though lambda capture)
    Option *each(std::function<void(std::string)> func) {
        validators_.emplace_back(
            [func](std::string &inout) {
                func(inout);
                return std::string{};
            },
            std::string{});
        return this;
    }
    /// Get a named Validator
    Validator *get_validator(const std::string &validator_name = "") {
        for(auto &validator : validators_) {
            if(validator_name == validator.get_name()) {
                return &validator;
            }
        }
        if((validator_name.empty()) && (!validators_.empty())) {
            return &(validators_.front());
        }
        throw OptionNotFound(std::string("Validator ") + validator_name + " Not Found");
    }
    /// Sets required options
    Option *needs(Option *opt) {
        auto tup = needs_.insert(opt);
        if(!tup.second)
            throw OptionAlreadyAdded::Requires(get_name(), opt->get_name());
        return this;
    }

    /// Can find a string if needed
    template <typename T = App> Option *needs(std::string opt_name) {
        for(const Option_p &opt : dynamic_cast<T *>(parent_)->options_)
            if(opt.get() != this && opt->check_name(opt_name))
                return needs(opt.get());
        throw IncorrectConstruction::MissingOption(opt_name);
    }

    /// Any number supported, any mix of string and Opt
    template <typename A, typename B, typename... ARG> Option *needs(A opt, B opt1, ARG... args) {
        needs(opt);
        return needs(opt1, args...);
    }

    /// Remove needs link from an option. Returns true if the option really was in the needs list.
    bool remove_needs(Option *opt) {
        auto iterator = std::find(std::begin(needs_), std::end(needs_), opt);

        if(iterator != std::end(needs_)) {
            needs_.erase(iterator);
            return true;
        } else {
            return false;
        }
    }

    /// Sets excluded options
    Option *excludes(Option *opt) {
        excludes_.insert(opt);

        // Help text should be symmetric - excluding a should exclude b
        opt->excludes_.insert(this);

        // Ignoring the insert return value, excluding twice is now allowed.
        // (Mostly to allow both directions to be excluded by user, even though the library does it for you.)

        return this;
    }

    /// Can find a string if needed
    template <typename T = App> Option *excludes(std::string opt_name) {
        for(const Option_p &opt : dynamic_cast<T *>(parent_)->options_)
            if(opt.get() != this && opt->check_name(opt_name))
                return excludes(opt.get());
        throw IncorrectConstruction::MissingOption(opt_name);
    }

    /// Any number supported, any mix of string and Opt
    template <typename A, typename B, typename... ARG> Option *excludes(A opt, B opt1, ARG... args) {
        excludes(opt);
        return excludes(opt1, args...);
    }

    /// Remove needs link from an option. Returns true if the option really was in the needs list.
    bool remove_excludes(Option *opt) {
        auto iterator = std::find(std::begin(excludes_), std::end(excludes_), opt);

        if(iterator != std::end(excludes_)) {
            excludes_.erase(iterator);
            return true;
        } else {
            return false;
        }
    }

    /// Sets environment variable to read if no option given
    Option *envname(std::string name) {
        envname_ = name;
        return this;
    }

    /// Ignore case
    ///
    /// The template hides the fact that we don't have the definition of App yet.
    /// You are never expected to add an argument to the template here.
    template <typename T = App> Option *ignore_case(bool value = true) {
        ignore_case_ = value;
        auto *parent = dynamic_cast<T *>(parent_);

        for(const Option_p &opt : parent->options_)
            if(opt.get() != this && *opt == *this)
                throw OptionAlreadyAdded(opt->get_name(true, true));

        return this;
    }

    /// Ignore underscores in the option names
    ///
    /// The template hides the fact that we don't have the definition of App yet.
    /// You are never expected to add an argument to the template here.
    template <typename T = App> Option *ignore_underscore(bool value = true) {
        ignore_underscore_ = value;
        auto *parent = dynamic_cast<T *>(parent_);
        for(const Option_p &opt : parent->options_)
            if(opt.get() != this && *opt == *this)
                throw OptionAlreadyAdded(opt->get_name(true, true));

        return this;
    }

    /// Take the last argument if given multiple times (or another policy)
    Option *multi_option_policy(MultiOptionPolicy value = MultiOptionPolicy::Throw) {

        if(get_items_expected() < 0)
            throw IncorrectConstruction::MultiOptionPolicy(get_name());
        multi_option_policy_ = value;
        return this;
    }

    /// disable flag overrides
    Option *disable_flag_override(bool value = true) {
        disable_flag_override_ = value;
        return this;
    }
    ///@}
    /// @name Accessors
    ///@{

    /// The number of arguments the option expects
    int get_type_size() const { return type_size_; }

    /// The environment variable associated to this value
    std::string get_envname() const { return envname_; }

    /// The set of options needed
    std::set<Option *> get_needs() const { return needs_; }

    /// The set of options excluded
    std::set<Option *> get_excludes() const { return excludes_; }

    /// The default value (for help printing) DEPRECATED Use get_default_str() instead
    CLI11_DEPRECATED("Use get_default_str() instead")
    std::string get_defaultval() const { return default_str_; }

    /// The default value (for help printing)
    std::string get_default_str() const { return default_str_; }

    /// Get the callback function
    callback_t get_callback() const { return callback_; }

    /// Get the long names
    const std::vector<std::string> get_lnames() const { return lnames_; }

    /// Get the short names
    const std::vector<std::string> get_snames() const { return snames_; }

    /// get the flag names with specified default values
    const std::vector<std::string> get_fnames() const { return fnames_; }

    /// The number of times the option expects to be included
    int get_expected() const { return expected_; }

    /// \brief The total number of expected values (including the type)
    /// This is positive if exactly this number is expected, and negative for at least N values
    ///
    /// v = fabs(size_type*expected)
    /// !MultiOptionPolicy::Throw
    ///           | Expected < 0  | Expected == 0 | Expected > 0
    /// Size < 0  |      -v       |       0       |     -v
    /// Size == 0 |       0       |       0       |      0
    /// Size > 0  |      -v       |       0       |     -v       // Expected must be 1
    ///
    /// MultiOptionPolicy::Throw
    ///           | Expected < 0  | Expected == 0 | Expected > 0
    /// Size < 0  |      -v       |       0       |      v
    /// Size == 0 |       0       |       0       |      0
    /// Size > 0  |       v       |       0       |      v      // Expected must be 1
    ///
    int get_items_expected() const {
        return std::abs(type_size_ * expected_) *
               ((multi_option_policy_ != MultiOptionPolicy::Throw || (expected_ < 0 && type_size_ < 0) ? -1 : 1));
    }

    /// True if the argument can be given directly
    bool get_positional() const { return pname_.length() > 0; }

    /// True if option has at least one non-positional name
    bool nonpositional() const { return (snames_.size() + lnames_.size()) > 0; }

    /// True if option has description
    bool has_description() const { return description_.length() > 0; }

    /// Get the description
    const std::string &get_description() const { return description_; }

    /// Set the description
    Option *description(std::string option_description) {
        description_ = std::move(option_description);
        return this;
    }

    ///@}
    /// @name Help tools
    ///@{

    /// \brief Gets a comma separated list of names.
    /// Will include / prefer the positional name if positional is true.
    /// If all_options is false, pick just the most descriptive name to show.
    /// Use `get_name(true)` to get the positional name (replaces `get_pname`)
    std::string get_name(bool positional = false, //<[input] Show the positional name
                         bool all_options = false //<[input] Show every option
                         ) const {

        if(all_options) {

            std::vector<std::string> name_list;

            /// The all list will never include a positional unless asked or that's the only name.
            if((positional && pname_.length()) || (snames_.empty() && lnames_.empty()))
                name_list.push_back(pname_);
            if((get_items_expected() == 0) && (!fnames_.empty())) {
                for(const std::string &sname : snames_) {
                    name_list.push_back("-" + sname);
                    if(check_fname(sname)) {
                        name_list.back() += "{" + get_flag_value(sname, "") + "}";
                    }
                }

                for(const std::string &lname : lnames_) {
                    name_list.push_back("--" + lname);
                    if(check_fname(lname)) {
                        name_list.back() += "{" + get_flag_value(lname, "") + "}";
                    }
                }
            } else {
                for(const std::string &sname : snames_)
                    name_list.push_back("-" + sname);

                for(const std::string &lname : lnames_)
                    name_list.push_back("--" + lname);
            }

            return detail::join(name_list);

        } else {

            // This returns the positional name no matter what
            if(positional)
                return pname_;

            // Prefer long name
            else if(!lnames_.empty())
                return std::string("--") + lnames_[0];

            // Or short name if no long name
            else if(!snames_.empty())
                return std::string("-") + snames_[0];

            // If positional is the only name, it's okay to use that
            else
                return pname_;
        }
    }

    ///@}
    /// @name Parser tools
    ///@{

    /// Process the callback
    void run_callback() {

        callback_run_ = true;

        // Run the validators (can change the string)
        if(!validators_.empty()) {
            for(std::string &result : results_) {
                auto err_msg = _validate(result);
                if(!err_msg.empty())
                    throw ValidationError(get_name(), err_msg);
            }
        }
        if(!(callback_)) {
            return;
        }
        bool local_result;

        // Num items expected or length of vector, always at least 1
        // Only valid for a trimming policy
        int trim_size =
            std::min<int>(std::max<int>(std::abs(get_items_expected()), 1), static_cast<int>(results_.size()));

        // Operation depends on the policy setting
        if(multi_option_policy_ == MultiOptionPolicy::TakeLast) {
            // Allow multi-option sizes (including 0)
            results_t partial_result{results_.end() - trim_size, results_.end()};
            local_result = !callback_(partial_result);

        } else if(multi_option_policy_ == MultiOptionPolicy::TakeFirst) {
            results_t partial_result{results_.begin(), results_.begin() + trim_size};
            local_result = !callback_(partial_result);

        } else if(multi_option_policy_ == MultiOptionPolicy::Join) {
            results_t partial_result = {detail::join(results_, "\n")};
            local_result = !callback_(partial_result);

        } else {
            // Exact number required
            if(get_items_expected() > 0) {
                if(results_.size() != static_cast<size_t>(get_items_expected()))
                    throw ArgumentMismatch(get_name(), get_items_expected(), results_.size());
                // Variable length list
            } else if(get_items_expected() < 0) {
                // Require that this be a multiple of expected size and at least as many as expected
                if(results_.size() < static_cast<size_t>(-get_items_expected()) ||
                   results_.size() % static_cast<size_t>(std::abs(get_type_size())) != 0u)
                    throw ArgumentMismatch(get_name(), get_items_expected(), results_.size());
            }
            local_result = !callback_(results_);
        }

        if(local_result)
            throw ConversionError(get_name(), results_);
    }

    /// If options share any of the same names, they are equal (not counting positional)
    bool operator==(const Option &other) const {
        for(const std::string &sname : snames_)
            if(other.check_sname(sname))
                return true;
        for(const std::string &lname : lnames_)
            if(other.check_lname(lname))
                return true;

        if(ignore_case_ ||
           ignore_underscore_) { // We need to do the inverse, in case we are ignore_case or ignore underscore
            for(const std::string &sname : other.snames_)
                if(check_sname(sname))
                    return true;
            for(const std::string &lname : other.lnames_)
                if(check_lname(lname))
                    return true;
        }
        return false;
    }

    /// Check a name. Requires "-" or "--" for short / long, supports positional name
    bool check_name(std::string name) const {

        if(name.length() > 2 && name[0] == '-' && name[1] == '-')
            return check_lname(name.substr(2));
        else if(name.length() > 1 && name.front() == '-')
            return check_sname(name.substr(1));
        else {
            std::string local_pname = pname_;
            if(ignore_underscore_) {
                local_pname = detail::remove_underscore(local_pname);
                name = detail::remove_underscore(name);
            }
            if(ignore_case_) {
                local_pname = detail::to_lower(local_pname);
                name = detail::to_lower(name);
            }
            return name == local_pname;
        }
    }

    /// Requires "-" to be removed from string
    bool check_sname(std::string name) const { return (detail::find_member(name, snames_, ignore_case_) >= 0); }

    /// Requires "--" to be removed from string
    bool check_lname(std::string name) const {
        return (detail::find_member(name, lnames_, ignore_case_, ignore_underscore_) >= 0);
    }

    /// Requires "--" to be removed from string
    bool check_fname(std::string name) const {
        if(fnames_.empty()) {
            return false;
        }
        return (detail::find_member(name, fnames_, ignore_case_, ignore_underscore_) >= 0);
    }

    std::string get_flag_value(std::string name, std::string input_value) const {
        static const std::string trueString{"true"};
        static const std::string falseString{"false"};
        static const std::string emptyString{"{}"};
        // check for disable flag override_
        if(disable_flag_override_) {
            if(!((input_value.empty()) || (input_value == emptyString))) {
                auto default_ind = detail::find_member(name, fnames_, ignore_case_, ignore_underscore_);
                if(default_ind >= 0) {
                    // We can static cast this to size_t because it is more than 0 in this block
                    if(default_flag_values_[static_cast<size_t>(default_ind)].second != input_value) {
                        throw(ArgumentMismatch::FlagOverride(name));
                    }
                } else {
                    if(input_value != trueString) {
                        throw(ArgumentMismatch::FlagOverride(name));
                    }
                }
            }
        }
        auto ind = detail::find_member(name, fnames_, ignore_case_, ignore_underscore_);
        if((input_value.empty()) || (input_value == emptyString)) {
            return (ind < 0) ? trueString : default_flag_values_[static_cast<size_t>(ind)].second;
        }
        if(ind < 0) {
            return input_value;
        }
        if(default_flag_values_[static_cast<size_t>(ind)].second == falseString) {
            try {
                auto val = detail::to_flag_value(input_value);
                return (val == 1) ? falseString : (val == (-1) ? trueString : std::to_string(-val));
            } catch(const std::invalid_argument &) {
                return input_value;
            }
        } else {
            return input_value;
        }
    }

    /// Puts a result at the end
    Option *add_result(std::string s) {
        _add_result(std::move(s));
        callback_run_ = false;
        return this;
    }

    /// Puts a result at the end and get a count of the number of arguments actually added
    Option *add_result(std::string s, int &results_added) {
        results_added = _add_result(std::move(s));
        callback_run_ = false;
        return this;
    }

    /// Puts a result at the end
    Option *add_result(std::vector<std::string> s) {
        for(auto &str : s) {
            _add_result(std::move(str));
        }
        callback_run_ = false;
        return this;
    }

    /// Get a copy of the results
    std::vector<std::string> results() const { return results_; }

    /// get the results as a particular type
    template <typename T,
              enable_if_t<!is_vector<T>::value && !std::is_const<T>::value, detail::enabler> = detail::dummy>
    void results(T &output) const {
        bool retval;
        if(results_.empty()) {
            retval = detail::lexical_cast(default_str_, output);
        } else if(results_.size() == 1) {
            retval = detail::lexical_cast(results_[0], output);
        } else {
            switch(multi_option_policy_) {
            case MultiOptionPolicy::TakeFirst:
                retval = detail::lexical_cast(results_.front(), output);
                break;
            case MultiOptionPolicy::TakeLast:
            default:
                retval = detail::lexical_cast(results_.back(), output);
                break;
            case MultiOptionPolicy::Throw:
                throw ConversionError(get_name(), results_);
            case MultiOptionPolicy::Join:
                retval = detail::lexical_cast(detail::join(results_), output);
                break;
            }
        }
        if(!retval) {
            throw ConversionError(get_name(), results_);
        }
    }
    /// get the results as a vector of a particular type
    template <typename T> void results(std::vector<T> &output) const {
        output.clear();
        bool retval = true;

        for(const auto &elem : results_) {
            output.emplace_back();
            retval &= detail::lexical_cast(elem, output.back());
        }

        if(!retval) {
            throw ConversionError(get_name(), results_);
        }
    }

    /// return the results as a particular type
    template <typename T> T as() const {
        T output;
        results(output);
        return output;
    }

    /// See if the callback has been run already
    bool get_callback_run() const { return callback_run_; }

    ///@}
    /// @name Custom options
    ///@{

    /// Set the type function to run when displayed on this option
    Option *type_name_fn(std::function<std::string()> typefun) {
        type_name_ = typefun;
        return this;
    }

    /// Set a custom option typestring
    Option *type_name(std::string typeval) {
        type_name_fn([typeval]() { return typeval; });
        return this;
    }

    /// Set a custom option size
    Option *type_size(int option_type_size) {
        type_size_ = option_type_size;
        if(type_size_ == 0)
            required_ = false;
        if(option_type_size < 0)
            expected_ = -1;
        return this;
    }

    /// Set a capture function for the default. Mostly used by App.
    Option *default_function(const std::function<std::string()> &func) {
        default_function_ = func;
        return this;
    }

    /// Capture the default value from the original value (if it can be captured)
    Option *capture_default_str() {
        if(default_function_) {
            default_str_ = default_function_();
        }
        return this;
    }

    /// Set the default value string representation (does not change the contained value)
    Option *default_str(std::string val) {
        default_str_ = val;
        return this;
    }

    /// Set the default value string representation and evaluate into the bound value
    Option *default_val(std::string val) {
        default_str(val);
        auto old_results = results_;
        results_ = {val};
        run_callback();
        results_ = std::move(old_results);
        return this;
    }

    /// Get the full typename for this option
    std::string get_type_name() const {
        std::string full_type_name = type_name_();
        if(!validators_.empty()) {
            for(auto &validator : validators_) {
                std::string vtype = validator.get_description();
                if(!vtype.empty()) {
                    full_type_name += ":" + vtype;
                }
            }
        }
        return full_type_name;
    }

  private:
    // run through the validators
    std::string _validate(std::string &result) {
        std::string err_msg;
        for(const auto &vali : validators_) {
            try {
                err_msg = vali(result);
            } catch(const ValidationError &err) {
                err_msg = err.what();
            }
            if(!err_msg.empty())
                break;
        }
        return err_msg;
    }

    int _add_result(std::string &&result) {
        int result_count = 0;
        if(delimiter_ == '\0') {
            results_.push_back(std::move(result));
            ++result_count;
        } else {
            if((result.find_first_of(delimiter_) != std::string::npos)) {
                for(const auto &var : CLI::detail::split(result, delimiter_)) {
                    if(!var.empty()) {
                        results_.push_back(var);
                        ++result_count;
                    }
                }
            } else {
                results_.push_back(std::move(result));
                ++result_count;
            }
        }
        return result_count;
    }
};

} // namespace CLI

// From CLI/App.hpp:

namespace CLI {

#ifndef CLI11_PARSE
#define CLI11_PARSE(app, argc, argv)                                                                                   \
    try {                                                                                                              \
        (app).parse((argc), (argv));                                                                                   \
    } catch(const CLI::ParseError &e) {                                                                                \
        return (app).exit(e);                                                                                          \
    }
#endif

namespace detail {
enum class Classifier { NONE, POSITIONAL_MARK, SHORT, LONG, WINDOWS, SUBCOMMAND, SUBCOMMAND_TERMINATOR };
struct AppFriend;
} // namespace detail

namespace FailureMessage {
std::string simple(const App *app, const Error &e);
std::string help(const App *app, const Error &e);
} // namespace FailureMessage

class App;

using App_p = std::shared_ptr<App>;

class Option_group;
/// Creates a command line program, with very few defaults.
/** To use, create a new `Program()` instance with `argc`, `argv`, and a help description. The templated
 *  add_option methods make it easy to prepare options. Remember to call `.start` before starting your
 * program, so that the options can be evaluated and the help option doesn't accidentally run your program. */
class App {
    friend Option;
    friend detail::AppFriend;

  protected:
    // This library follows the Google style guide for member names ending in underscores

    /// @name Basics
    ///@{

    /// Subcommand name or program name (from parser if name is empty)
    std::string name_;

    /// Description of the current program/subcommand
    std::string description_;

    /// If true, allow extra arguments (ie, don't throw an error). INHERITABLE
    bool allow_extras_{false};

    /// If true, allow extra arguments in the ini file (ie, don't throw an error). INHERITABLE
    bool allow_config_extras_{false};

    ///  If true, return immediately on an unrecognized option (implies allow_extras) INHERITABLE
    bool prefix_command_{false};

    /// If set to true the name was automatically generated from the command line vs a user set name
    bool has_automatic_name_{false};

    /// If set to true the subcommand is required to be processed and used, ignored for main app
    bool required_{false};

    /// If set to true the subcommand is disabled and cannot be used, ignored for main app
    bool disabled_{false};

    /// Flag indicating that the pre_parse_callback has been triggered
    bool pre_parse_called_{false};

    /// Flag indicating that the callback for the subcommand should be executed immediately on parse completion which is
    /// before help or ini files are processed. INHERITABLE
    bool immediate_callback_{false};

    /// This is a function that runs prior to the start of parsing
    std::function<void(size_t)> pre_parse_callback_;

    /// This is a function that runs when complete. Great for subcommands. Can throw.
    std::function<void()> callback_;

    ///@}
    /// @name Options
    ///@{

    /// The default values for options, customizable and changeable INHERITABLE
    OptionDefaults option_defaults_;

    /// The list of options, stored locally
    std::vector<Option_p> options_;

    ///@}
    /// @name Help
    ///@{

    /// Footer to put after all options in the help output INHERITABLE
    std::string footer_;

    /// A pointer to the help flag if there is one INHERITABLE
    Option *help_ptr_{nullptr};

    /// A pointer to the help all flag if there is one INHERITABLE
    Option *help_all_ptr_{nullptr};

    /// This is the formatter for help printing. Default provided. INHERITABLE (same pointer)
    std::shared_ptr<FormatterBase> formatter_{new Formatter()};

    /// The error message printing function INHERITABLE
    std::function<std::string(const App *, const Error &e)> failure_message_ = FailureMessage::simple;

    ///@}
    /// @name Parsing
    ///@{

    using missing_t = std::vector<std::pair<detail::Classifier, std::string>>;

    /// Pair of classifier, string for missing options. (extra detail is removed on returning from parse)
    ///
    /// This is faster and cleaner than storing just a list of strings and reparsing. This may contain the -- separator.
    missing_t missing_;

    /// This is a list of pointers to options with the original parse order
    std::vector<Option *> parse_order_;

    /// This is a list of the subcommands collected, in order
    std::vector<App *> parsed_subcommands_;

    /// this is a list of subcommands that are exclusionary to this one
    std::set<App *> exclude_subcommands_;

    /// This is a list of options which are exclusionary to this App, if the options were used this subcommand should
    /// not be
    std::set<Option *> exclude_options_;

    ///@}
    /// @name Subcommands
    ///@{

    /// Storage for subcommand list
    std::vector<App_p> subcommands_;

    /// If true, the program name is not case sensitive INHERITABLE
    bool ignore_case_{false};

    /// If true, the program should ignore underscores INHERITABLE
    bool ignore_underscore_{false};

    /// Allow subcommand fallthrough, so that parent commands can collect commands after subcommand.  INHERITABLE
    bool fallthrough_{false};

    /// Allow '/' for options for Windows like options. Defaults to true on Windows, false otherwise. INHERITABLE
    bool allow_windows_style_options_{
#ifdef _WIN32
        true
#else
        false
#endif
    };
    /// specify that positional arguments come at the end of the argument sequence not inheritable
    bool positionals_at_end_{false};

    /// If set to true the subcommand will start each parse disabled
    bool disabled_by_default_{false};
    /// If set to true the subcommand will be reenabled at the start of each parse
    bool enabled_by_default_{false};
    /// If set to true positional options are validated before assigning INHERITABLE
    bool validate_positionals_{false};
    /// A pointer to the parent if this is a subcommand
    App *parent_{nullptr};

    /// Counts the number of times this command/subcommand was parsed
    size_t parsed_ = 0;

    /// Minimum required subcommands (not inheritable!)
    size_t require_subcommand_min_ = 0;

    /// Max number of subcommands allowed (parsing stops after this number). 0 is unlimited INHERITABLE
    size_t require_subcommand_max_ = 0;

    /// Minimum required options (not inheritable!)
    size_t require_option_min_ = 0;

    /// Max number of options allowed. 0 is unlimited (not inheritable)
    size_t require_option_max_ = 0;

    /// The group membership INHERITABLE
    std::string group_{"Subcommands"};

    ///@}
    /// @name Config
    ///@{

    /// The name of the connected config file
    std::string config_name_;

    /// True if ini is required (throws if not present), if false simply keep going.
    bool config_required_{false};

    /// Pointer to the config option
    Option *config_ptr_{nullptr};

    /// This is the formatter for help printing. Default provided. INHERITABLE (same pointer)
    std::shared_ptr<Config> config_formatter_{new ConfigINI()};

    ///@}

    /// Special private constructor for subcommand
    App(std::string app_description, std::string app_name, App *parent)
        : name_(std::move(app_name)), description_(std::move(app_description)), parent_(parent) {
        // Inherit if not from a nullptr
        if(parent_ != nullptr) {
            if(parent_->help_ptr_ != nullptr)
                set_help_flag(parent_->help_ptr_->get_name(false, true), parent_->help_ptr_->get_description());
            if(parent_->help_all_ptr_ != nullptr)
                set_help_all_flag(parent_->help_all_ptr_->get_name(false, true),
                                  parent_->help_all_ptr_->get_description());

            /// OptionDefaults
            option_defaults_ = parent_->option_defaults_;

            // INHERITABLE
            failure_message_ = parent_->failure_message_;
            allow_extras_ = parent_->allow_extras_;
            allow_config_extras_ = parent_->allow_config_extras_;
            prefix_command_ = parent_->prefix_command_;
            immediate_callback_ = parent_->immediate_callback_;
            ignore_case_ = parent_->ignore_case_;
            ignore_underscore_ = parent_->ignore_underscore_;
            fallthrough_ = parent_->fallthrough_;
            validate_positionals_ = parent_->validate_positionals_;
            allow_windows_style_options_ = parent_->allow_windows_style_options_;
            group_ = parent_->group_;
            footer_ = parent_->footer_;
            formatter_ = parent_->formatter_;
            config_formatter_ = parent_->config_formatter_;
            require_subcommand_max_ = parent_->require_subcommand_max_;
        }
    }

  public:
    /// @name Basic
    ///@{

    /// Create a new program. Pass in the same arguments as main(), along with a help string.
    explicit App(std::string app_description = "", std::string app_name = "")
        : App(app_description, app_name, nullptr) {
        set_help_flag("-h,--help", "Print this help message and exit");
    }

    /// virtual destructor
    virtual ~App() = default;

    /// Set a callback for the end of parsing.
    ///
    /// Due to a bug in c++11,
    /// it is not possible to overload on std::function (fixed in c++14
    /// and backported to c++11 on newer compilers). Use capture by reference
    /// to get a pointer to App if needed.
    App *callback(std::function<void()> app_callback) {
        callback_ = std::move(app_callback);
        return this;
    }

    /// Set a callback to execute prior to parsing.
    ///
    App *preparse_callback(std::function<void(size_t)> pp_callback) {
        pre_parse_callback_ = std::move(pp_callback);
        return this;
    }

    /// Set a name for the app (empty will use parser to set the name)
    App *name(std::string app_name = "") {
        name_ = app_name;
        has_automatic_name_ = false;
        return this;
    }

    /// Remove the error when extras are left over on the command line.
    App *allow_extras(bool allow = true) {
        allow_extras_ = allow;
        return this;
    }

    /// Remove the error when extras are left over on the command line.
    App *required(bool require = true) {
        required_ = require;
        return this;
    }

    /// Disable the subcommand or option group
    App *disabled(bool disable = true) {
        disabled_ = disable;
        return this;
    }

    /// Set the subcommand to be disabled by default, so on clear(), at the start of each parse it is disabled
    App *disabled_by_default(bool disable = true) {
        disabled_by_default_ = disable;
        return this;
    }

    /// Set the subcommand to be enabled by default, so on clear(), at the start of each parse it is enabled (not
    /// disabled)
    App *enabled_by_default(bool enable = true) {
        enabled_by_default_ = enable;
        return this;
    }

    /// Set the subcommand callback to be executed immediately on subcommand completion
    App *immediate_callback(bool immediate = true) {
        immediate_callback_ = immediate;
        return this;
    }

    /// Set the subcommand to validate positional arguments before assigning
    App *validate_positionals(bool validate = true) {
        validate_positionals_ = validate;
        return this;
    }

    /// Remove the error when extras are left over on the command line.
    /// Will also call App::allow_extras().
    App *allow_config_extras(bool allow = true) {
        allow_extras(allow);
        allow_config_extras_ = allow;
        return this;
    }

    /// Do not parse anything after the first unrecognized option and return
    App *prefix_command(bool allow = true) {
        prefix_command_ = allow;
        return this;
    }

    /// Ignore case. Subcommands inherit value.
    App *ignore_case(bool value = true) {
        ignore_case_ = value;
        if(parent_ != nullptr && !name_.empty()) {
            for(const auto &subc : parent_->subcommands_) {
                if(subc.get() != this && (this->check_name(subc->name_) || subc->check_name(this->name_)))
                    throw OptionAlreadyAdded(subc->name_);
            }
        }
        return this;
    }

    /// Allow windows style options, such as `/opt`. First matching short or long name used. Subcommands inherit value.
    App *allow_windows_style_options(bool value = true) {
        allow_windows_style_options_ = value;
        return this;
    }

    /// Specify that the positional arguments are only at the end of the sequence
    App *positionals_at_end(bool value = true) {
        positionals_at_end_ = value;
        return this;
    }

    /// Ignore underscore. Subcommands inherit value.
    App *ignore_underscore(bool value = true) {
        ignore_underscore_ = value;
        if(parent_ != nullptr && !name_.empty()) {
            for(const auto &subc : parent_->subcommands_) {
                if(subc.get() != this && (this->check_name(subc->name_) || subc->check_name(this->name_)))
                    throw OptionAlreadyAdded(subc->name_);
            }
        }
        return this;
    }

    /// Set the help formatter
    App *formatter(std::shared_ptr<FormatterBase> fmt) {
        formatter_ = fmt;
        return this;
    }

    /// Set the help formatter
    App *formatter_fn(std::function<std::string(const App *, std::string, AppFormatMode)> fmt) {
        formatter_ = std::make_shared<FormatterLambda>(fmt);
        return this;
    }

    /// Set the config formatter
    App *config_formatter(std::shared_ptr<Config> fmt) {
        config_formatter_ = fmt;
        return this;
    }

    /// Check to see if this subcommand was parsed, true only if received on command line.
    bool parsed() const { return parsed_ > 0; }

    /// Get the OptionDefault object, to set option defaults
    OptionDefaults *option_defaults() { return &option_defaults_; }

    ///@}
    /// @name Adding options
    ///@{

    /// Add an option, will automatically understand the type for common types.
    ///
    /// To use, create a variable with the expected type, and pass it in after the name.
    /// After start is called, you can use count to see if the value was passed, and
    /// the value will be initialized properly. Numbers, vectors, and strings are supported.
    ///
    /// ->required(), ->default, and the validators are options,
    /// The positional options take an optional number of arguments.
    ///
    /// For example,
    ///
    ///     std::string filename;
    ///     program.add_option("filename", filename, "description of filename");
    ///
    Option *add_option(std::string option_name,
                       callback_t option_callback,
                       std::string option_description = "",
                       bool defaulted = false,
                       std::function<std::string()> func = {}) {
        Option myopt{option_name, option_description, option_callback, this};

        if(std::find_if(std::begin(options_), std::end(options_), [&myopt](const Option_p &v) {
               return *v == myopt;
           }) == std::end(options_)) {
            options_.emplace_back();
            Option_p &option = options_.back();
            option.reset(new Option(option_name, option_description, option_callback, this));

            // Set the default string capture function
            option->default_function(func);

            // For compatibility with CLI11 1.7 and before, capture the default string here
            if(defaulted)
                option->capture_default_str();

            // Transfer defaults to the new option
            option_defaults_.copy_to(option.get());

            // Don't bother to capture if we already did
            if(!defaulted && option->get_always_capture_default())
                option->capture_default_str();

            return option.get();

        } else
            throw OptionAlreadyAdded(myopt.get_name());
    }

    /// Add option for non-vectors (duplicate copy needed without defaulted to avoid `iostream << value`)
    template <typename T, enable_if_t<!is_vector<T>::value & !std::is_const<T>::value, detail::enabler> = detail::dummy>
    Option *add_option(std::string option_name,
                       T &variable, ///< The variable to set
                       std::string option_description = "",
                       bool defaulted = false) {

        auto fun = [&variable](CLI::results_t res) { return detail::lexical_cast(res[0], variable); };

        Option *opt = add_option(option_name, fun, option_description, defaulted, [&variable]() {
            return std::string(CLI::detail::to_string(variable));
        });
        opt->type_name(detail::type_name<T>());

        return opt;
    }

    /// Add option for a callback of a specific type
    template <typename T, enable_if_t<!is_vector<T>::value, detail::enabler> = detail::dummy>
    Option *add_option_function(std::string option_name,
                                const std::function<void(const T &)> &func, ///< the callback to execute
                                std::string option_description = "") {

        auto fun = [func](CLI::results_t res) {
            T variable;
            bool result = detail::lexical_cast(res[0], variable);
            if(result) {
                func(variable);
            }
            return result;
        };

        Option *opt = add_option(option_name, std::move(fun), option_description, false);
        opt->type_name(detail::type_name<T>());
        return opt;
    }

    /// Add option with no description or variable assignment
    Option *add_option(std::string option_name) {
        return add_option(option_name, CLI::callback_t(), std::string{}, false);
    }

    /// Add option with description but with no variable assignment or callback
    template <typename T,
              enable_if_t<std::is_const<T>::value && std::is_constructible<std::string, T>::value, detail::enabler> =
                  detail::dummy>
    Option *add_option(std::string option_name, T &option_description) {
        return add_option(option_name, CLI::callback_t(), option_description, false);
    }

    /// Add option for vectors
    template <typename T>
    Option *add_option(std::string option_name,
                       std::vector<T> &variable, ///< The variable vector to set
                       std::string option_description = "",
                       bool defaulted = false) {

        auto fun = [&variable](CLI::results_t res) {
            bool retval = true;
            variable.clear();
            variable.reserve(res.size());
            for(const auto &elem : res) {

                variable.emplace_back();
                retval &= detail::lexical_cast(elem, variable.back());
            }
            return (!variable.empty()) && retval;
        };

        auto default_function = [&variable]() {
            std::vector<std::string> defaults;
            defaults.resize(variable.size());
            std::transform(variable.begin(), variable.end(), defaults.begin(), [](T &val) {
                return std::string(CLI::detail::to_string(val));
            });
            return std::string("[" + detail::join(defaults) + "]");
        };

        Option *opt = add_option(option_name, fun, option_description, defaulted, default_function);
        opt->type_name(detail::type_name<T>())->type_size(-1);

        return opt;
    }

    /// Add option for a vector callback of a specific type
    template <typename T, enable_if_t<is_vector<T>::value, detail::enabler> = detail::dummy>
    Option *add_option_function(std::string option_name,
                                const std::function<void(const T &)> &func, ///< the callback to execute
                                std::string option_description = "") {

        CLI::callback_t fun = [func](CLI::results_t res) {
            T values;
            bool retval = true;
            values.reserve(res.size());
            for(const auto &elem : res) {
                values.emplace_back();
                retval &= detail::lexical_cast(elem, values.back());
            }
            if(retval) {
                func(values);
            }
            return retval;
        };

        Option *opt = add_option(option_name, std::move(fun), std::move(option_description), false);
        opt->type_name(detail::type_name<T>())->type_size(-1);
        return opt;
    }

    /// Set a help flag, replace the existing one if present
    Option *set_help_flag(std::string flag_name = "", const std::string &help_description = "") {
        // take flag_description by const reference otherwise add_flag tries to assign to help_description
        if(help_ptr_ != nullptr) {
            remove_option(help_ptr_);
            help_ptr_ = nullptr;
        }

        // Empty name will simply remove the help flag
        if(!flag_name.empty()) {
            help_ptr_ = add_flag(flag_name, help_description);
            help_ptr_->configurable(false);
        }

        return help_ptr_;
    }

    /// Set a help all flag, replaced the existing one if present
    Option *set_help_all_flag(std::string help_name = "", const std::string &help_description = "") {
        // take flag_description by const reference otherwise add_flag tries to assign to flag_description
        if(help_all_ptr_ != nullptr) {
            remove_option(help_all_ptr_);
            help_all_ptr_ = nullptr;
        }

        // Empty name will simply remove the help all flag
        if(!help_name.empty()) {
            help_all_ptr_ = add_flag(help_name, help_description);
            help_all_ptr_->configurable(false);
        }

        return help_all_ptr_;
    }

  private:
    /// Internal function for adding a flag
    Option *_add_flag_internal(std::string flag_name, CLI::callback_t fun, std::string flag_description) {
        Option *opt;
        if(detail::has_default_flag_values(flag_name)) {
            // check for default values and if it has them
            auto flag_defaults = detail::get_default_flag_values(flag_name);
            detail::remove_default_flag_values(flag_name);
            opt = add_option(std::move(flag_name), std::move(fun), std::move(flag_description), false);
            for(const auto &fname : flag_defaults)
                opt->fnames_.push_back(fname.first);
            opt->default_flag_values_ = std::move(flag_defaults);
        } else {
            opt = add_option(std::move(flag_name), std::move(fun), std::move(flag_description), false);
        }
        // flags cannot have positional values
        if(opt->get_positional()) {
            auto pos_name = opt->get_name(true);
            remove_option(opt);
            throw IncorrectConstruction::PositionalFlag(pos_name);
        }

        opt->type_size(0);
        return opt;
    }

  public:
    /// Add a flag with no description or variable assignment
    Option *add_flag(std::string flag_name) { return _add_flag_internal(flag_name, CLI::callback_t(), std::string{}); }

    /// Add flag with description but with no variable assignment or callback
    /// takes a constant string,  if a variable string is passed that variable will be assigned the results from the
    /// flag
    template <typename T,
              enable_if_t<std::is_const<T>::value && std::is_constructible<std::string, T>::value, detail::enabler> =
                  detail::dummy>
    Option *add_flag(std::string flag_name, T &flag_description) {
        return _add_flag_internal(flag_name, CLI::callback_t(), flag_description);
    }

    /// Add option for flag with integer result - defaults to allowing multiple passings, but can be forced to one if
    /// `multi_option_policy(CLI::MultiOptionPolicy::Throw)` is used.
    template <typename T,
              enable_if_t<std::is_integral<T>::value && !is_bool<T>::value, detail::enabler> = detail::dummy>
    Option *add_flag(std::string flag_name,
                     T &flag_count, ///< A variable holding the count
                     std::string flag_description = "") {
        flag_count = 0;
        CLI::callback_t fun = [&flag_count](CLI::results_t res) {
            try {
                detail::sum_flag_vector(res, flag_count);
            } catch(const std::invalid_argument &) {
                return false;
            }
            return true;
        };
        return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
    }

    /// Other type version accepts all other types that are not vectors such as bool, enum, string or other classes that
    /// can be converted from a string
    template <typename T,
              enable_if_t<!is_vector<T>::value && !std::is_const<T>::value &&
                              (!std::is_integral<T>::value || is_bool<T>::value) &&
                              !std::is_constructible<std::function<void(int)>, T>::value,
                          detail::enabler> = detail::dummy>
    Option *add_flag(std::string flag_name,
                     T &flag_result, ///< A variable holding true if passed
                     std::string flag_description = "") {

        CLI::callback_t fun = [&flag_result](CLI::results_t res) {
            if(res.size() != 1) {
                return false;
            }
            return CLI::detail::lexical_cast(res[0], flag_result);
        };
        Option *opt = _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
        opt->multi_option_policy(CLI::MultiOptionPolicy::TakeLast);
        return opt;
    }

    /// Vector version to capture multiple flags.
    template <typename T,
              enable_if_t<!std::is_assignable<std::function<void(int64_t)>, T>::value, detail::enabler> = detail::dummy>
    Option *add_flag(std::string flag_name,
                     std::vector<T> &flag_results, ///< A vector of values with the flag results
                     std::string flag_description = "") {
        CLI::callback_t fun = [&flag_results](CLI::results_t res) {
            bool retval = true;
            for(const auto &elem : res) {
                flag_results.emplace_back();
                retval &= detail::lexical_cast(elem, flag_results.back());
            }
            return retval;
        };
        return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
    }

    /// Add option for callback that is triggered with a true flag and takes no arguments
    Option *add_flag_callback(std::string flag_name,
                              std::function<void(void)> function, ///< A function to call, void(void)
                              std::string flag_description = "") {

        CLI::callback_t fun = [function](CLI::results_t res) {
            if(res.size() != 1) {
                return false;
            }
            bool trigger;
            auto result = CLI::detail::lexical_cast(res[0], trigger);
            if(trigger)
                function();
            return result;
        };
        Option *opt = _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
        opt->multi_option_policy(CLI::MultiOptionPolicy::TakeLast);
        return opt;
    }

    /// Add option for callback with an integer value
    Option *add_flag_function(std::string flag_name,
                              std::function<void(int64_t)> function, ///< A function to call, void(int)
                              std::string flag_description = "") {

        CLI::callback_t fun = [function](CLI::results_t res) {
            int64_t flag_count = 0;
            detail::sum_flag_vector(res, flag_count);
            function(flag_count);
            return true;
        };
        return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
    }

#ifdef CLI11_CPP14
    /// Add option for callback (C++14 or better only)
    Option *add_flag(std::string flag_name,
                     std::function<void(int64_t)> function, ///< A function to call, void(int64_t)
                     std::string flag_description = "") {
        return add_flag_function(std::move(flag_name), std::move(function), std::move(flag_description));
    }
#endif

    /// Add set of options (No default, temp reference, such as an inline set) DEPRECATED
    template <typename T>
    Option *add_set(std::string option_name,
                    T &member,           ///< The selected member of the set
                    std::set<T> options, ///< The set of possibilities
                    std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->check(IsMember{options});
        return opt;
    }

    /// Add set of options (No default, set can be changed afterwards - do not destroy the set) DEPRECATED
    template <typename T>
    Option *add_mutable_set(std::string option_name,
                            T &member,                  ///< The selected member of the set
                            const std::set<T> &options, ///< The set of possibilities
                            std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->check(IsMember{&options});
        return opt;
    }

    /// Add set of options (with default, static set, such as an inline set) DEPRECATED
    template <typename T>
    Option *add_set(std::string option_name,
                    T &member,           ///< The selected member of the set
                    std::set<T> options, ///< The set of possibilities
                    std::string option_description,
                    bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->check(IsMember{options});
        return opt;
    }

    /// Add set of options (with default, set can be changed afterwards - do not destroy the set) DEPRECATED
    template <typename T>
    Option *add_mutable_set(std::string option_name,
                            T &member,                  ///< The selected member of the set
                            const std::set<T> &options, ///< The set of possibilities
                            std::string option_description,
                            bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->check(IsMember{&options});
        return opt;
    }

    /// Add set of options, string only, ignore case (no default, static set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_case)) instead")
    Option *add_set_ignore_case(std::string option_name,
                                std::string &member,           ///< The selected member of the set
                                std::set<std::string> options, ///< The set of possibilities
                                std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->transform(IsMember{options, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore case (no default, set can be changed afterwards - do not destroy the
    /// set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_case)) with a (shared) pointer instead")
    Option *add_mutable_set_ignore_case(std::string option_name,
                                        std::string &member,                  ///< The selected member of the set
                                        const std::set<std::string> &options, ///< The set of possibilities
                                        std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->transform(IsMember{&options, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore case (default, static set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_case)) instead")
    Option *add_set_ignore_case(std::string option_name,
                                std::string &member,           ///< The selected member of the set
                                std::set<std::string> options, ///< The set of possibilities
                                std::string option_description,
                                bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->transform(IsMember{options, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore case (default, set can be changed afterwards - do not destroy the set)
    /// DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(...)) with a (shared) pointer instead")
    Option *add_mutable_set_ignore_case(std::string option_name,
                                        std::string &member,                  ///< The selected member of the set
                                        const std::set<std::string> &options, ///< The set of possibilities
                                        std::string option_description,
                                        bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->transform(IsMember{&options, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore underscore (no default, static set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_underscore)) instead")
    Option *add_set_ignore_underscore(std::string option_name,
                                      std::string &member,           ///< The selected member of the set
                                      std::set<std::string> options, ///< The set of possibilities
                                      std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->transform(IsMember{options, CLI::ignore_underscore});
        return opt;
    }

    /// Add set of options, string only, ignore underscore (no default, set can be changed afterwards - do not destroy
    /// the set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_underscore)) with a (shared) pointer instead")
    Option *add_mutable_set_ignore_underscore(std::string option_name,
                                              std::string &member,                  ///< The selected member of the set
                                              const std::set<std::string> &options, ///< The set of possibilities
                                              std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->transform(IsMember{options, CLI::ignore_underscore});
        return opt;
    }

    /// Add set of options, string only, ignore underscore (default, static set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_underscore)) instead")
    Option *add_set_ignore_underscore(std::string option_name,
                                      std::string &member,           ///< The selected member of the set
                                      std::set<std::string> options, ///< The set of possibilities
                                      std::string option_description,
                                      bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->transform(IsMember{options, CLI::ignore_underscore});
        return opt;
    }

    /// Add set of options, string only, ignore underscore (default, set can be changed afterwards - do not destroy the
    /// set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_underscore)) with a (shared) pointer instead")
    Option *add_mutable_set_ignore_underscore(std::string option_name,
                                              std::string &member,                  ///< The selected member of the set
                                              const std::set<std::string> &options, ///< The set of possibilities
                                              std::string option_description,
                                              bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->transform(IsMember{&options, CLI::ignore_underscore});
        return opt;
    }

    /// Add set of options, string only, ignore underscore and case (no default, static set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_case, CLI::ignore_underscore)) instead")
    Option *add_set_ignore_case_underscore(std::string option_name,
                                           std::string &member,           ///< The selected member of the set
                                           std::set<std::string> options, ///< The set of possibilities
                                           std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->transform(IsMember{options, CLI::ignore_underscore, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore underscore and case (no default, set can be changed afterwards - do not
    /// destroy the set) DEPRECATED
    CLI11_DEPRECATED(
        "Use ->transform(CLI::IsMember(..., CLI::ignore_case, CLI::ignore_underscore)) with a (shared) pointer instead")
    Option *add_mutable_set_ignore_case_underscore(std::string option_name,
                                                   std::string &member, ///< The selected member of the set
                                                   const std::set<std::string> &options, ///< The set of possibilities
                                                   std::string option_description = "") {

        Option *opt = add_option(option_name, member, std::move(option_description));
        opt->transform(IsMember{&options, CLI::ignore_underscore, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore underscore and case (default, static set) DEPRECATED
    CLI11_DEPRECATED("Use ->transform(CLI::IsMember(..., CLI::ignore_case, CLI::ignore_underscore)) instead")
    Option *add_set_ignore_case_underscore(std::string option_name,
                                           std::string &member,           ///< The selected member of the set
                                           std::set<std::string> options, ///< The set of possibilities
                                           std::string option_description,
                                           bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->transform(IsMember{options, CLI::ignore_underscore, CLI::ignore_case});
        return opt;
    }

    /// Add set of options, string only, ignore underscore and case (default, set can be changed afterwards - do not
    /// destroy the set) DEPRECATED
    CLI11_DEPRECATED(
        "Use ->transform(CLI::IsMember(..., CLI::ignore_case, CLI::ignore_underscore)) with a (shared) pointer instead")
    Option *add_mutable_set_ignore_case_underscore(std::string option_name,
                                                   std::string &member, ///< The selected member of the set
                                                   const std::set<std::string> &options, ///< The set of possibilities
                                                   std::string option_description,
                                                   bool defaulted) {

        Option *opt = add_option(option_name, member, std::move(option_description), defaulted);
        opt->transform(IsMember{&options, CLI::ignore_underscore, CLI::ignore_case});
        return opt;
    }

    /// Add a complex number
    template <typename T>
    Option *add_complex(std::string option_name,
                        T &variable,
                        std::string option_description = "",
                        bool defaulted = false,
                        std::string label = "COMPLEX") {

        std::string simple_name = CLI::detail::split(option_name, ',').at(0);
        CLI::callback_t fun = [&variable, simple_name, label](results_t res) {
            if(res[1].back() == 'i')
                res[1].pop_back();
            double x, y;
            bool worked = detail::lexical_cast(res[0], x) && detail::lexical_cast(res[1], y);
            if(worked)
                variable = T(x, y);
            return worked;
        };

        auto default_function = [&variable]() {
            std::stringstream out;
            out << variable;
            return out.str();
        };

        CLI::Option *opt =
            add_option(option_name, std::move(fun), std::move(option_description), defaulted, default_function);

        opt->type_name(label)->type_size(2);
        return opt;
    }

    /// Set a configuration ini file option, or clear it if no name passed
    Option *set_config(std::string option_name = "",
                       std::string default_filename = "",
                       std::string help_message = "Read an ini file",
                       bool config_required = false) {

        // Remove existing config if present
        if(config_ptr_ != nullptr)
            remove_option(config_ptr_);

        // Only add config if option passed
        if(!option_name.empty()) {
            config_name_ = default_filename;
            config_required_ = config_required;
            config_ptr_ = add_option(option_name, config_name_, help_message, !default_filename.empty());
            config_ptr_->configurable(false);
        }

        return config_ptr_;
    }

    /// Removes an option from the App. Takes an option pointer. Returns true if found and removed.
    bool remove_option(Option *opt) {
        // Make sure no links exist
        for(Option_p &op : options_) {
            op->remove_needs(opt);
            op->remove_excludes(opt);
        }

        if(help_ptr_ == opt)
            help_ptr_ = nullptr;
        if(help_all_ptr_ == opt)
            help_all_ptr_ = nullptr;

        auto iterator =
            std::find_if(std::begin(options_), std::end(options_), [opt](const Option_p &v) { return v.get() == opt; });
        if(iterator != std::end(options_)) {
            options_.erase(iterator);
            return true;
        }
        return false;
    }

    /// creates an option group as part of the given app
    template <typename T = Option_group>
    T *add_option_group(std::string group_name, std::string group_description = "") {
        auto option_group = std::make_shared<T>(std::move(group_description), group_name, nullptr);
        auto ptr = option_group.get();
        // move to App_p for overload resolution on older gcc versions
        App_p app_ptr = std::dynamic_pointer_cast<App>(option_group);
        add_subcommand(std::move(app_ptr));
        return ptr;
    }

    ///@}
    /// @name Subcommmands
    ///@{

    /// Add a subcommand. Inherits INHERITABLE and OptionDefaults, and help flag
    App *add_subcommand(std::string subcommand_name = "", std::string subcommand_description = "") {
        CLI::App_p subcom = std::shared_ptr<App>(new App(std::move(subcommand_description), subcommand_name, this));
        return add_subcommand(std::move(subcom));
    }

    /// Add a previously created app as a subcommand
    App *add_subcommand(CLI::App_p subcom) {
        if(!subcom)
            throw IncorrectConstruction("passed App is not valid");
        if(!subcom->name_.empty()) {
            for(const auto &subc : subcommands_)
                if(subc->check_name(subcom->name_) || subcom->check_name(subc->name_))
                    throw OptionAlreadyAdded(subc->name_);
        }
        subcom->parent_ = this;
        subcommands_.push_back(std::move(subcom));
        return subcommands_.back().get();
    }

    /// Removes a subcommand from the App. Takes a subcommand pointer. Returns true if found and removed.
    bool remove_subcommand(App *subcom) {
        // Make sure no links exist
        for(App_p &sub : subcommands_) {
            sub->remove_excludes(subcom);
        }

        auto iterator = std::find_if(
            std::begin(subcommands_), std::end(subcommands_), [subcom](const App_p &v) { return v.get() == subcom; });
        if(iterator != std::end(subcommands_)) {
            subcommands_.erase(iterator);
            return true;
        }
        return false;
    }
    /// Check to see if a subcommand is part of this command (doesn't have to be in command line)
    /// returns the first subcommand if passed a nullptr
    App *get_subcommand(App *subcom) const {
        if(subcom == nullptr)
            throw OptionNotFound("nullptr passed");
        for(const App_p &subcomptr : subcommands_)
            if(subcomptr.get() == subcom)
                return subcom;
        throw OptionNotFound(subcom->get_name());
    }

    /// Check to see if a subcommand is part of this command (text version)
    App *get_subcommand(std::string subcom) const {
        auto subc = _find_subcommand(subcom, false, false);
        if(subc == nullptr)
            throw OptionNotFound(subcom);
        return subc;
    }
    /// Get a pointer to subcommand by index
    App *get_subcommand(int index = 0) const {
        if(index >= 0) {
            auto uindex = static_cast<unsigned>(index);
            if(uindex < subcommands_.size())
                return subcommands_[uindex].get();
        }
        throw OptionNotFound(std::to_string(index));
    }

    /// Check to see if a subcommand is part of this command and get a shared_ptr to it
    CLI::App_p get_subcommand_ptr(App *subcom) const {
        if(subcom == nullptr)
            throw OptionNotFound("nullptr passed");
        for(const App_p &subcomptr : subcommands_)
            if(subcomptr.get() == subcom)
                return subcomptr;
        throw OptionNotFound(subcom->get_name());
    }

    /// Check to see if a subcommand is part of this command (text version)
    CLI::App_p get_subcommand_ptr(std::string subcom) const {
        for(const App_p &subcomptr : subcommands_)
            if(subcomptr->check_name(subcom))
                return subcomptr;
        throw OptionNotFound(subcom);
    }

    /// Get an owning pointer to subcommand by index
    CLI::App_p get_subcommand_ptr(int index = 0) const {
        if(index >= 0) {
            auto uindex = static_cast<unsigned>(index);
            if(uindex < subcommands_.size())
                return subcommands_[uindex];
        }
        throw OptionNotFound(std::to_string(index));
    }

    /// Check to see if an option group is part of this App
    App *get_option_group(std::string group_name) const {
        for(const App_p &app : subcommands_) {
            if(app->name_.empty() && app->group_ == group_name) {
                return app.get();
            }
        }
        throw OptionNotFound(group_name);
    }

    /// No argument version of count counts the number of times this subcommand was
    /// passed in. The main app will return 1. Unnamed subcommands will also return 1 unless
    /// otherwise modified in a callback
    size_t count() const { return parsed_; }

    /// Get a count of all the arguments processed in options and subcommands, this excludes arguments which were
    /// treated as extras.
    size_t count_all() const {
        size_t cnt{0};
        for(auto &opt : options_) {
            cnt += opt->count();
        }
        for(auto &sub : subcommands_) {
            cnt += sub->count_all();
        }
        if(!get_name().empty()) { // for named subcommands add the number of times the subcommand was called
            cnt += parsed_;
        }
        return cnt;
    }

    /// Changes the group membership
    App *group(std::string group_name) {
        group_ = group_name;
        return this;
    }

    /// The argumentless form of require subcommand requires 1 or more subcommands
    App *require_subcommand() {
        require_subcommand_min_ = 1;
        require_subcommand_max_ = 0;
        return this;
    }

    /// Require a subcommand to be given (does not affect help call)
    /// The number required can be given. Negative values indicate maximum
    /// number allowed (0 for any number). Max number inheritable.
    App *require_subcommand(int value) {
        if(value < 0) {
            require_subcommand_min_ = 0;
            require_subcommand_max_ = static_cast<size_t>(-value);
        } else {
            require_subcommand_min_ = static_cast<size_t>(value);
            require_subcommand_max_ = static_cast<size_t>(value);
        }
        return this;
    }

    /// Explicitly control the number of subcommands required. Setting 0
    /// for the max means unlimited number allowed. Max number inheritable.
    App *require_subcommand(size_t min, size_t max) {
        require_subcommand_min_ = min;
        require_subcommand_max_ = max;
        return this;
    }

    /// The argumentless form of require option requires 1 or more options be used
    App *require_option() {
        require_option_min_ = 1;
        require_option_max_ = 0;
        return this;
    }

    /// Require an option to be given (does not affect help call)
    /// The number required can be given. Negative values indicate maximum
    /// number allowed (0 for any number).
    App *require_option(int value) {
        if(value < 0) {
            require_option_min_ = 0;
            require_option_max_ = static_cast<size_t>(-value);
        } else {
            require_option_min_ = static_cast<size_t>(value);
            require_option_max_ = static_cast<size_t>(value);
        }
        return this;
    }

    /// Explicitly control the number of options required. Setting 0
    /// for the max means unlimited number allowed. Max number inheritable.
    App *require_option(size_t min, size_t max) {
        require_option_min_ = min;
        require_option_max_ = max;
        return this;
    }

    /// Stop subcommand fallthrough, so that parent commands cannot collect commands after subcommand.
    /// Default from parent, usually set on parent.
    App *fallthrough(bool value = true) {
        fallthrough_ = value;
        return this;
    }

    /// Check to see if this subcommand was parsed, true only if received on command line.
    /// This allows the subcommand to be directly checked.
    operator bool() const { return parsed_ > 0; }

    ///@}
    /// @name Extras for subclassing
    ///@{

    /// This allows subclasses to inject code before callbacks but after parse.
    ///
    /// This does not run if any errors or help is thrown.
    virtual void pre_callback() {}

    ///@}
    /// @name Parsing
    ///@{
    //
    /// Reset the parsed data
    void clear() {

        parsed_ = 0;
        pre_parse_called_ = false;

        missing_.clear();
        parsed_subcommands_.clear();
        for(const Option_p &opt : options_) {
            opt->clear();
        }
        for(const App_p &subc : subcommands_) {
            subc->clear();
        }
    }

    /// Parses the command line - throws errors.
    /// This must be called after the options are in but before the rest of the program.
    void parse(int argc, const char *const *argv) {
        // If the name is not set, read from command line
        if(name_.empty() || has_automatic_name_) {
            has_automatic_name_ = true;
            name_ = argv[0];
        }

        std::vector<std::string> args;
        args.reserve(static_cast<size_t>(argc - 1));
        for(int i = argc - 1; i > 0; i--)
            args.emplace_back(argv[i]);
        parse(std::move(args));
    }

    /// Parse a single string as if it contained command line arguments.
    /// This function splits the string into arguments then calls parse(std::vector<std::string> &)
    /// the function takes an optional boolean argument specifying if the programName is included in the string to
    /// process
    void parse(std::string commandline, bool program_name_included = false) {

        if(program_name_included) {
            auto nstr = detail::split_program_name(commandline);
            if((name_.empty()) || (has_automatic_name_)) {
                has_automatic_name_ = true;
                name_ = nstr.first;
            }
            commandline = std::move(nstr.second);
        } else
            detail::trim(commandline);
        // the next section of code is to deal with quoted arguments after an '=' or ':' for windows like operations
        if(!commandline.empty()) {
            commandline = detail::find_and_modify(commandline, "=", detail::escape_detect);
            if(allow_windows_style_options_)
                commandline = detail::find_and_modify(commandline, ":", detail::escape_detect);
        }

        auto args = detail::split_up(std::move(commandline));
        // remove all empty strings
        args.erase(std::remove(args.begin(), args.end(), std::string{}), args.end());
        std::reverse(args.begin(), args.end());

        parse(std::move(args));
    }

    /// The real work is done here. Expects a reversed vector.
    /// Changes the vector to the remaining options.
    void parse(std::vector<std::string> &args) {
        // Clear if parsed
        if(parsed_ > 0)
            clear();

        // parsed_ is incremented in commands/subcommands,
        // but placed here to make sure this is cleared when
        // running parse after an error is thrown, even by _validate or _configure.
        parsed_ = 1;
        _validate();
        _configure();
        // set the parent as nullptr as this object should be the top now
        parent_ = nullptr;
        parsed_ = 0;

        _parse(args);
        run_callback();
    }

    /// The real work is done here. Expects a reversed vector.
    void parse(std::vector<std::string> &&args) {
        // Clear if parsed
        if(parsed_ > 0)
            clear();

        // parsed_ is incremented in commands/subcommands,
        // but placed here to make sure this is cleared when
        // running parse after an error is thrown, even by _validate or _configure.
        parsed_ = 1;
        _validate();
        _configure();
        // set the parent as nullptr as this object should be the top now
        parent_ = nullptr;
        parsed_ = 0;

        _parse(std::move(args));
        run_callback();
    }

    /// Provide a function to print a help message. The function gets access to the App pointer and error.
    void failure_message(std::function<std::string(const App *, const Error &e)> function) {
        failure_message_ = function;
    }

    /// Print a nice error message and return the exit code
    int exit(const Error &e, std::ostream &out = std::cout, std::ostream &err = std::cerr) const {

        /// Avoid printing anything if this is a CLI::RuntimeError
        if(dynamic_cast<const CLI::RuntimeError *>(&e) != nullptr)
            return e.get_exit_code();

        if(dynamic_cast<const CLI::CallForHelp *>(&e) != nullptr) {
            out << help();
            return e.get_exit_code();
        }

        if(dynamic_cast<const CLI::CallForAllHelp *>(&e) != nullptr) {
            out << help("", AppFormatMode::All);
            return e.get_exit_code();
        }

        if(e.get_exit_code() != static_cast<int>(ExitCodes::Success)) {
            if(failure_message_)
                err << failure_message_(this, e) << std::flush;
        }

        return e.get_exit_code();
    }

    ///@}
    /// @name Post parsing
    ///@{

    /// Counts the number of times the given option was passed.
    size_t count(std::string option_name) const { return get_option(option_name)->count(); }

    /// Get a subcommand pointer list to the currently selected subcommands (after parsing by default, in command
    /// line order; use parsed = false to get the original definition list.)
    std::vector<App *> get_subcommands() const { return parsed_subcommands_; }

    /// Get a filtered subcommand pointer list from the original definition list. An empty function will provide all
    /// subcommands (const)
    std::vector<const App *> get_subcommands(const std::function<bool(const App *)> &filter) const {
        std::vector<const App *> subcomms(subcommands_.size());
        std::transform(std::begin(subcommands_), std::end(subcommands_), std::begin(subcomms), [](const App_p &v) {
            return v.get();
        });

        if(filter) {
            subcomms.erase(std::remove_if(std::begin(subcomms),
                                          std::end(subcomms),
                                          [&filter](const App *app) { return !filter(app); }),
                           std::end(subcomms));
        }

        return subcomms;
    }

    /// Get a filtered subcommand pointer list from the original definition list. An empty function will provide all
    /// subcommands
    std::vector<App *> get_subcommands(const std::function<bool(App *)> &filter) {
        std::vector<App *> subcomms(subcommands_.size());
        std::transform(std::begin(subcommands_), std::end(subcommands_), std::begin(subcomms), [](const App_p &v) {
            return v.get();
        });

        if(filter) {
            subcomms.erase(
                std::remove_if(std::begin(subcomms), std::end(subcomms), [&filter](App *app) { return !filter(app); }),
                std::end(subcomms));
        }

        return subcomms;
    }

    /// Check to see if given subcommand was selected
    bool got_subcommand(App *subcom) const {
        // get subcom needed to verify that this was a real subcommand
        return get_subcommand(subcom)->parsed_ > 0;
    }

    /// Check with name instead of pointer to see if subcommand was selected
    bool got_subcommand(std::string subcommand_name) const { return get_subcommand(subcommand_name)->parsed_ > 0; }

    /// Sets excluded options for the subcommand
    App *excludes(Option *opt) {
        if(opt == nullptr) {
            throw OptionNotFound("nullptr passed");
        }
        exclude_options_.insert(opt);
        return this;
    }

    /// Sets excluded subcommands for the subcommand
    App *excludes(App *app) {
        if((app == this) || (app == nullptr)) {
            throw OptionNotFound("nullptr passed");
        }
        auto res = exclude_subcommands_.insert(app);
        // subcommand exclusion should be symmetric
        if(res.second) {
            app->exclude_subcommands_.insert(this);
        }
        return this;
    }

    /// Removes an option from the excludes list of this subcommand
    bool remove_excludes(Option *opt) {
        auto iterator = std::find(std::begin(exclude_options_), std::end(exclude_options_), opt);
        if(iterator != std::end(exclude_options_)) {
            exclude_options_.erase(iterator);
            return true;
        } else {
            return false;
        }
    }

    /// Removes a subcommand from this excludes list of this subcommand
    bool remove_excludes(App *app) {
        auto iterator = std::find(std::begin(exclude_subcommands_), std::end(exclude_subcommands_), app);
        if(iterator != std::end(exclude_subcommands_)) {
            auto other_app = *iterator;
            exclude_subcommands_.erase(iterator);
            other_app->remove_excludes(this);
            return true;
        } else {
            return false;
        }
    }

    ///@}
    /// @name Help
    ///@{

    /// Set footer.
    App *footer(std::string footer_string) {
        footer_ = std::move(footer_string);
        return this;
    }

    /// Produce a string that could be read in as a config of the current values of the App. Set default_also to
    /// include default arguments. Prefix will add a string to the beginning of each option.
    std::string config_to_str(bool default_also = false, bool write_description = false) const {
        return config_formatter_->to_config(this, default_also, write_description, "");
    }

    /// Makes a help message, using the currently configured formatter
    /// Will only do one subcommand at a time
    std::string help(std::string prev = "", AppFormatMode mode = AppFormatMode::Normal) const {
        if(prev.empty())
            prev = get_name();
        else
            prev += " " + get_name();

        // Delegate to subcommand if needed
        auto selected_subcommands = get_subcommands();
        if(!selected_subcommands.empty())
            return selected_subcommands.at(0)->help(prev, mode);
        else
            return formatter_->make_help(this, prev, mode);
    }

    ///@}
    /// @name Getters
    ///@{

    /// Access the formatter
    std::shared_ptr<FormatterBase> get_formatter() const { return formatter_; }

    /// Access the config formatter
    std::shared_ptr<Config> get_config_formatter() const { return config_formatter_; }

    /// Get the app or subcommand description
    std::string get_description() const { return description_; }

    /// Set the description of the app
    App *description(std::string app_description) {
        description_ = std::move(app_description);
        return this;
    }

    /// Get the list of options (user facing function, so returns raw pointers), has optional filter function
    std::vector<const Option *> get_options(const std::function<bool(const Option *)> filter = {}) const {
        std::vector<const Option *> options(options_.size());
        std::transform(std::begin(options_), std::end(options_), std::begin(options), [](const Option_p &val) {
            return val.get();
        });

        if(filter) {
            options.erase(std::remove_if(std::begin(options),
                                         std::end(options),
                                         [&filter](const Option *opt) { return !filter(opt); }),
                          std::end(options));
        }

        return options;
    }

    /// Get an option by name (noexcept non-const version)
    Option *get_option_no_throw(std::string option_name) noexcept {
        for(Option_p &opt : options_) {
            if(opt->check_name(option_name)) {
                return opt.get();
            }
        }
        for(auto &subc : subcommands_) {
            // also check down into nameless subcommands
            if(subc->get_name().empty()) {
                auto opt = subc->get_option_no_throw(option_name);
                if(opt != nullptr) {
                    return opt;
                }
            }
        }
        return nullptr;
    }

    /// Get an option by name (noexcept const version)
    const Option *get_option_no_throw(std::string option_name) const noexcept {
        for(const Option_p &opt : options_) {
            if(opt->check_name(option_name)) {
                return opt.get();
            }
        }
        for(const auto &subc : subcommands_) {
            // also check down into nameless subcommands
            if(subc->get_name().empty()) {
                auto opt = subc->get_option_no_throw(option_name);
                if(opt != nullptr) {
                    return opt;
                }
            }
        }
        return nullptr;
    }

    /// Get an option by name
    const Option *get_option(std::string option_name) const {
        auto opt = get_option_no_throw(option_name);
        if(opt == nullptr) {
            throw OptionNotFound(option_name);
        }
        return opt;
    }

    /// Get an option by name (non-const version)
    Option *get_option(std::string option_name) {
        auto opt = get_option_no_throw(option_name);
        if(opt == nullptr) {
            throw OptionNotFound(option_name);
        }
        return opt;
    }

    /// Shortcut bracket operator for getting a pointer to an option
    const Option *operator[](const std::string &option_name) const { return get_option(option_name); }

    /// Shortcut bracket operator for getting a pointer to an option
    const Option *operator[](const char *option_name) const { return get_option(option_name); }

    /// Check the status of ignore_case
    bool get_ignore_case() const { return ignore_case_; }

    /// Check the status of ignore_underscore
    bool get_ignore_underscore() const { return ignore_underscore_; }

    /// Check the status of fallthrough
    bool get_fallthrough() const { return fallthrough_; }

    /// Check the status of the allow windows style options
    bool get_allow_windows_style_options() const { return allow_windows_style_options_; }

    /// Check the status of the allow windows style options
    bool get_positionals_at_end() const { return positionals_at_end_; }

    /// Get the group of this subcommand
    const std::string &get_group() const { return group_; }

    /// Get footer.
    const std::string &get_footer() const { return footer_; }

    /// Get the required min subcommand value
    size_t get_require_subcommand_min() const { return require_subcommand_min_; }

    /// Get the required max subcommand value
    size_t get_require_subcommand_max() const { return require_subcommand_max_; }

    /// Get the required min option value
    size_t get_require_option_min() const { return require_option_min_; }

    /// Get the required max option value
    size_t get_require_option_max() const { return require_option_max_; }

    /// Get the prefix command status
    bool get_prefix_command() const { return prefix_command_; }

    /// Get the status of allow extras
    bool get_allow_extras() const { return allow_extras_; }

    /// Get the status of required
    bool get_required() const { return required_; }

    /// Get the status of disabled
    bool get_disabled() const { return disabled_; }

    /// Get the status of disabled
    bool get_immediate_callback() const { return immediate_callback_; }

    /// Get the status of disabled by default
    bool get_disabled_by_default() const { return disabled_by_default_; }

    /// Get the status of disabled by default
    bool get_enabled_by_default() const { return enabled_by_default_; }
    /// Get the status of validating positionals
    bool get_validate_positionals() const { return validate_positionals_; }

    /// Get the status of allow extras
    bool get_allow_config_extras() const { return allow_config_extras_; }

    /// Get a pointer to the help flag.
    Option *get_help_ptr() { return help_ptr_; }

    /// Get a pointer to the help flag. (const)
    const Option *get_help_ptr() const { return help_ptr_; }

    /// Get a pointer to the help all flag. (const)
    const Option *get_help_all_ptr() const { return help_all_ptr_; }

    /// Get a pointer to the config option.
    Option *get_config_ptr() { return config_ptr_; }

    /// Get a pointer to the config option. (const)
    const Option *get_config_ptr() const { return config_ptr_; }

    /// Get the parent of this subcommand (or nullptr if master app)
    App *get_parent() { return parent_; }

    /// Get the parent of this subcommand (or nullptr if master app) (const version)
    const App *get_parent() const { return parent_; }

    /// Get the name of the current app
    std::string get_name() const { return name_; }

    /// Get a display name for an app
    std::string get_display_name() const { return (!name_.empty()) ? name_ : "[Option Group: " + get_group() + "]"; }

    /// Check the name, case insensitive and underscore insensitive if set
    bool check_name(std::string name_to_check) const {
        std::string local_name = name_;
        if(ignore_underscore_) {
            local_name = detail::remove_underscore(name_);
            name_to_check = detail::remove_underscore(name_to_check);
        }
        if(ignore_case_) {
            local_name = detail::to_lower(name_);
            name_to_check = detail::to_lower(name_to_check);
        }

        return local_name == name_to_check;
    }

    /// Get the groups available directly from this option (in order)
    std::vector<std::string> get_groups() const {
        std::vector<std::string> groups;

        for(const Option_p &opt : options_) {
            // Add group if it is not already in there
            if(std::find(groups.begin(), groups.end(), opt->get_group()) == groups.end()) {
                groups.push_back(opt->get_group());
            }
        }

        return groups;
    }

    /// This gets a vector of pointers with the original parse order
    const std::vector<Option *> &parse_order() const { return parse_order_; }

    /// This returns the missing options from the current subcommand
    std::vector<std::string> remaining(bool recurse = false) const {
        std::vector<std::string> miss_list;
        for(const std::pair<detail::Classifier, std::string> &miss : missing_) {
            miss_list.push_back(std::get<1>(miss));
        }
        // Get from a subcommand that may allow extras
        if(recurse) {
            if(!allow_extras_) {
                for(const auto &sub : subcommands_) {
                    if(sub->name_.empty() && !sub->missing_.empty()) {
                        for(const std::pair<detail::Classifier, std::string> &miss : sub->missing_) {
                            miss_list.push_back(std::get<1>(miss));
                        }
                    }
                }
            }
            // Recurse into subcommands

            for(const App *sub : parsed_subcommands_) {
                std::vector<std::string> output = sub->remaining(recurse);
                std::copy(std::begin(output), std::end(output), std::back_inserter(miss_list));
            }
        }
        return miss_list;
    }

    /// This returns the missing options in a form ready for processing by another command line program
    std::vector<std::string> remaining_for_passthrough(bool recurse = false) const {
        std::vector<std::string> miss_list = remaining(recurse);
        std::reverse(std::begin(miss_list), std::end(miss_list));
        return miss_list;
    }

    /// This returns the number of remaining options, minus the -- separator
    size_t remaining_size(bool recurse = false) const {
        auto remaining_options = static_cast<size_t>(std::count_if(
            std::begin(missing_), std::end(missing_), [](const std::pair<detail::Classifier, std::string> &val) {
                return val.first != detail::Classifier::POSITIONAL_MARK;
            }));

        if(recurse) {
            for(const App_p &sub : subcommands_) {
                remaining_options += sub->remaining_size(recurse);
            }
        }
        return remaining_options;
    }

    ///@}

  protected:
    /// Check the options to make sure there are no conflicts.
    ///
    /// Currently checks to see if multiple positionals exist with -1 args and checks if the min and max options are
    /// feasible
    void _validate() const {
        auto pcount = std::count_if(std::begin(options_), std::end(options_), [](const Option_p &opt) {
            return opt->get_items_expected() < 0 && opt->get_positional();
        });
        if(pcount > 1)
            throw InvalidError(name_);

        size_t nameless_subs{0};
        for(const App_p &app : subcommands_) {
            app->_validate();
            if(app->get_name().empty())
                ++nameless_subs;
        }

        if(require_option_min_ > 0) {
            if(require_option_max_ > 0) {
                if(require_option_max_ < require_option_min_) {
                    throw(InvalidError("Required min options greater than required max options",
                                       ExitCodes::InvalidError));
                }
            }
            if(require_option_min_ > (options_.size() + nameless_subs)) {
                throw(InvalidError("Required min options greater than number of available options",
                                   ExitCodes::InvalidError));
            }
        }
    }

    /// configure subcommands to enable parsing through the current object
    /// set the correct fallthrough and prefix for nameless subcommands and manage the automatic enable or disable
    /// makes sure parent is set correctly
    void _configure() {
        if(disabled_by_default_) {
            disabled_ = true;
        }
        if(enabled_by_default_) {
            disabled_ = false;
        }
        for(const App_p &app : subcommands_) {
            if(app->has_automatic_name_) {
                app->name_.clear();
            }
            if(app->name_.empty()) {
                app->fallthrough_ = false; // make sure fallthrough_ is false to prevent infinite loop
                app->prefix_command_ = false;
            }
            // make sure the parent is set to be this object in preparation for parse
            app->parent_ = this;
            app->_configure();
        }
    }
    /// Internal function to run (App) callback, bottom up
    void run_callback() {
        pre_callback();
        // run the callbacks for the received subcommands
        for(App *subc : get_subcommands()) {
            if(!subc->immediate_callback_)
                subc->run_callback();
        }
        // now run callbacks for option_groups
        for(auto &subc : subcommands_) {
            if(!subc->immediate_callback_ && subc->name_.empty() && subc->count_all() > 0) {
                subc->run_callback();
            }
        }
        // finally run the main callback
        if(callback_ && (parsed_ > 0)) {
            if(!name_.empty() || count_all() > 0) {
                callback_();
            }
        }
    }

    /// Check to see if a subcommand is valid. Give up immediately if subcommand max has been reached.
    bool _valid_subcommand(const std::string &current, bool ignore_used = true) const {
        // Don't match if max has been reached - but still check parents
        if(require_subcommand_max_ != 0 && parsed_subcommands_.size() >= require_subcommand_max_) {
            return parent_ != nullptr && parent_->_valid_subcommand(current, ignore_used);
        }
        auto com = _find_subcommand(current, true, ignore_used);
        if(com != nullptr) {
            return true;
        }
        // Check parent if exists, else return false
        return parent_ != nullptr && parent_->_valid_subcommand(current, ignore_used);
    }

    /// Selects a Classifier enum based on the type of the current argument
    detail::Classifier _recognize(const std::string &current, bool ignore_used_subcommands = true) const {
        std::string dummy1, dummy2;

        if(current == "--")
            return detail::Classifier::POSITIONAL_MARK;
        if(_valid_subcommand(current, ignore_used_subcommands))
            return detail::Classifier::SUBCOMMAND;
        if(detail::split_long(current, dummy1, dummy2))
            return detail::Classifier::LONG;
        if(detail::split_short(current, dummy1, dummy2))
            return detail::Classifier::SHORT;
        if((allow_windows_style_options_) && (detail::split_windows_style(current, dummy1, dummy2)))
            return detail::Classifier::WINDOWS;
        if((current == "++") && !name_.empty() && parent_ != nullptr)
            return detail::Classifier::SUBCOMMAND_TERMINATOR;
        return detail::Classifier::NONE;
    }

    // The parse function is now broken into several parts, and part of process

    /// Read and process an ini file (main app only)
    void _process_ini() {
        // Process an INI file
        if(config_ptr_ != nullptr) {
            if(*config_ptr_) {
                config_ptr_->run_callback();
                config_required_ = true;
            }
            if(!config_name_.empty()) {
                try {
                    std::vector<ConfigItem> values = config_formatter_->from_file(config_name_);
                    _parse_config(values);
                } catch(const FileError &) {
                    if(config_required_)
                        throw;
                }
            }
        }
    }

    /// Get envname options if not yet passed. Runs on *all* subcommands.
    void _process_env() {
        for(const Option_p &opt : options_) {
            if(opt->count() == 0 && !opt->envname_.empty()) {
                char *buffer = nullptr;
                std::string ename_string;

#ifdef _MSC_VER
                // Windows version
                size_t sz = 0;
                if(_dupenv_s(&buffer, &sz, opt->envname_.c_str()) == 0 && buffer != nullptr) {
                    ename_string = std::string(buffer);
                    free(buffer);
                }
#else
                // This also works on Windows, but gives a warning
                buffer = std::getenv(opt->envname_.c_str());
                if(buffer != nullptr)
                    ename_string = std::string(buffer);
#endif

                if(!ename_string.empty()) {
                    opt->add_result(ename_string);
                }
            }
        }

        for(App_p &sub : subcommands_) {
            if(sub->get_name().empty() || !sub->immediate_callback_)
                sub->_process_env();
        }
    }

    /// Process callbacks. Runs on *all* subcommands.
    void _process_callbacks() {

        for(App_p &sub : subcommands_) {
            // process the priority option_groups first
            if(sub->get_name().empty() && sub->immediate_callback_) {
                if(sub->count_all() > 0) {
                    sub->_process_callbacks();
                    sub->run_callback();
                }
            }
        }

        for(const Option_p &opt : options_) {
            if(opt->count() > 0 && !opt->get_callback_run()) {
                opt->run_callback();
            }
        }

        for(App_p &sub : subcommands_) {
            if(!sub->immediate_callback_) {
                sub->_process_callbacks();
            }
        }
    }

    /// Run help flag processing if any are found.
    ///
    /// The flags allow recursive calls to remember if there was a help flag on a parent.
    void _process_help_flags(bool trigger_help = false, bool trigger_all_help = false) const {
        const Option *help_ptr = get_help_ptr();
        const Option *help_all_ptr = get_help_all_ptr();

        if(help_ptr != nullptr && help_ptr->count() > 0)
            trigger_help = true;
        if(help_all_ptr != nullptr && help_all_ptr->count() > 0)
            trigger_all_help = true;

        // If there were parsed subcommands, call those. First subcommand wins if there are multiple ones.
        if(!parsed_subcommands_.empty()) {
            for(const App *sub : parsed_subcommands_)
                sub->_process_help_flags(trigger_help, trigger_all_help);

            // Only the final subcommand should call for help. All help wins over help.
        } else if(trigger_all_help) {
            throw CallForAllHelp();
        } else if(trigger_help) {
            throw CallForHelp();
        }
    }

    /// Verify required options and cross requirements. Subcommands too (only if selected).
    void _process_requirements() {
        // check excludes
        bool excluded{false};
        std::string excluder;
        for(auto &opt : exclude_options_) {
            if(opt->count() > 0) {
                excluded = true;
                excluder = opt->get_name();
            }
        }
        for(auto &subc : exclude_subcommands_) {
            if(subc->count_all() > 0) {
                excluded = true;
                excluder = subc->get_display_name();
            }
        }
        if(excluded) {
            if(count_all() > 0) {
                throw ExcludesError(get_display_name(), excluder);
            }
            // if we are excluded but didn't receive anything, just return
            return;
        }
        size_t used_options = 0;
        for(const Option_p &opt : options_) {

            if(opt->count() != 0) {
                ++used_options;
            }
            // Required or partially filled
            if(opt->get_required() || opt->count() != 0) {
                // Make sure enough -N arguments parsed (+N is already handled in parsing function)
                if(opt->get_items_expected() < 0 && opt->count() < static_cast<size_t>(-opt->get_items_expected()))
                    throw ArgumentMismatch::AtLeast(opt->get_name(), -opt->get_items_expected());

                // Required but empty
                if(opt->get_required() && opt->count() == 0)
                    throw RequiredError(opt->get_name());
            }
            // Requires
            for(const Option *opt_req : opt->needs_)
                if(opt->count() > 0 && opt_req->count() == 0)
                    throw RequiresError(opt->get_name(), opt_req->get_name());
            // Excludes
            for(const Option *opt_ex : opt->excludes_)
                if(opt->count() > 0 && opt_ex->count() != 0)
                    throw ExcludesError(opt->get_name(), opt_ex->get_name());
        }
        // check for the required number of subcommands
        if(require_subcommand_min_ > 0) {
            auto selected_subcommands = get_subcommands();
            if(require_subcommand_min_ > selected_subcommands.size())
                throw RequiredError::Subcommand(require_subcommand_min_);
        }

        // Max error cannot occur, the extra subcommand will parse as an ExtrasError or a remaining item.

        // run this loop to check how many unnamed subcommands were actually used since they are considered options from
        // the perspective of an App
        for(App_p &sub : subcommands_) {
            if(sub->disabled_)
                continue;
            if(sub->name_.empty() && sub->count_all() > 0) {
                ++used_options;
            }
        }

        if(require_option_min_ > used_options || (require_option_max_ > 0 && require_option_max_ < used_options)) {
            auto option_list = detail::join(options_, [](const Option_p &ptr) { return ptr->get_name(false, true); });
            if(option_list.compare(0, 10, "-h,--help,") == 0) {
                option_list.erase(0, 10);
            }
            auto subc_list = get_subcommands([](App *app) { return ((app->get_name().empty()) && (!app->disabled_)); });
            if(!subc_list.empty()) {
                option_list += "," + detail::join(subc_list, [](const App *app) { return app->get_display_name(); });
            }
            throw RequiredError::Option(require_option_min_, require_option_max_, used_options, option_list);
        }

        // now process the requirements for subcommands if needed
        for(App_p &sub : subcommands_) {
            if(sub->disabled_)
                continue;
            if(sub->name_.empty() && sub->required_ == false) {
                if(sub->count_all() == 0) {
                    if(require_option_min_ > 0 && require_option_min_ <= used_options) {
                        continue;
                        // if we have met the requirement and there is nothing in this option group skip checking
                        // requirements
                    }
                    if(require_option_max_ > 0 && used_options >= require_option_min_) {
                        continue;
                        // if we have met the requirement and there is nothing in this option group skip checking
                        // requirements
                    }
                }
            }
            if(sub->count() > 0 || sub->name_.empty()) {
                sub->_process_requirements();
            }

            if(sub->required_ && sub->count_all() == 0) {
                throw(CLI::RequiredError(sub->get_display_name()));
            }
        }
    }

    /// Process callbacks and such.
    void _process() {
        _process_ini();
        _process_env();
        _process_callbacks();
        _process_help_flags();
        _process_requirements();
    }

    /// Throw an error if anything is left over and should not be.
    void _process_extras() {
        if(!(allow_extras_ || prefix_command_)) {
            size_t num_left_over = remaining_size();
            if(num_left_over > 0) {
                throw ExtrasError(remaining(false));
            }
        }

        for(App_p &sub : subcommands_) {
            if(sub->count() > 0)
                sub->_process_extras();
        }
    }

    /// Throw an error if anything is left over and should not be.
    /// Modifies the args to fill in the missing items before throwing.
    void _process_extras(std::vector<std::string> &args) {
        if(!(allow_extras_ || prefix_command_)) {
            size_t num_left_over = remaining_size();
            if(num_left_over > 0) {
                args = remaining(false);
                throw ExtrasError(args);
            }
        }

        for(App_p &sub : subcommands_) {
            if(sub->count() > 0)
                sub->_process_extras(args);
        }
    }

    /// Internal function to recursively increment the parsed counter on the current app as well unnamed subcommands
    void increment_parsed() {
        ++parsed_;
        for(App_p &sub : subcommands_) {
            if(sub->get_name().empty())
                sub->increment_parsed();
        }
    }
    /// Internal parse function
    void _parse(std::vector<std::string> &args) {
        increment_parsed();
        _trigger_pre_parse(args.size());
        bool positional_only = false;

        while(!args.empty()) {
            if(!_parse_single(args, positional_only)) {
                break;
            }
        }

        if(parent_ == nullptr) {
            _process();

            // Throw error if any items are left over (depending on settings)
            _process_extras(args);

            // Convert missing (pairs) to extras (string only) ready for processing in another app
            args = remaining_for_passthrough(false);
        } else if(immediate_callback_) {
            _process_env();
            _process_callbacks();
            _process_help_flags();
            _process_requirements();
            run_callback();
        }
    }

    /// Internal parse function
    void _parse(std::vector<std::string> &&args) {
        // this can only be called by the top level in which case parent == nullptr by definition
        // operation is simplified
        increment_parsed();
        _trigger_pre_parse(args.size());
        bool positional_only = false;

        while(!args.empty()) {
            _parse_single(args, positional_only);
        }
        _process();

        // Throw error if any items are left over (depending on settings)
        _process_extras();
    }

    /// Parse one config param, return false if not found in any subcommand, remove if it is
    ///
    /// If this has more than one dot.separated.name, go into the subcommand matching it
    /// Returns true if it managed to find the option, if false you'll need to remove the arg manually.
    void _parse_config(std::vector<ConfigItem> &args) {
        for(ConfigItem item : args) {
            if(!_parse_single_config(item) && !allow_config_extras_)
                throw ConfigError::Extras(item.fullname());
        }
    }

    /// Fill in a single config option
    bool _parse_single_config(const ConfigItem &item, size_t level = 0) {
        if(level < item.parents.size()) {
            try {
                auto subcom = get_subcommand(item.parents.at(level));
                return subcom->_parse_single_config(item, level + 1);
            } catch(const OptionNotFound &) {
                return false;
            }
        }

        Option *op = get_option_no_throw("--" + item.name);
        if(op == nullptr) {
            // If the option was not present
            if(get_allow_config_extras())
                // Should we worry about classifying the extras properly?
                missing_.emplace_back(detail::Classifier::NONE, item.fullname());
            return false;
        }

        if(!op->get_configurable())
            throw ConfigError::NotConfigurable(item.fullname());

        if(op->empty()) {
            // Flag parsing
            if(op->get_type_size() == 0) {
                auto res = config_formatter_->to_flag(item);
                res = op->get_flag_value(item.name, res);

                op->add_result(res);

            } else {
                op->add_result(item.inputs);
                op->run_callback();
            }
        }

        return true;
    }

    /// Parse "one" argument (some may eat more than one), delegate to parent if fails, add to missing if missing
    /// from master return false if the parse has failed and needs to return to parent
    bool _parse_single(std::vector<std::string> &args, bool &positional_only) {
        bool retval = true;
        detail::Classifier classifier = positional_only ? detail::Classifier::NONE : _recognize(args.back());
        switch(classifier) {
        case detail::Classifier::POSITIONAL_MARK:
            args.pop_back();
            positional_only = true;
            if((!_has_remaining_positionals()) && (parent_ != nullptr)) {
                retval = false;
            } else {
                _move_to_missing(classifier, "--");
            }
            break;
        case detail::Classifier::SUBCOMMAND_TERMINATOR:
            // treat this like a positional mark if in the parent app
            args.pop_back();
            retval = false;
            break;
        case detail::Classifier::SUBCOMMAND:
            retval = _parse_subcommand(args);
            break;
        case detail::Classifier::LONG:
        case detail::Classifier::SHORT:
        case detail::Classifier::WINDOWS:
            // If already parsed a subcommand, don't accept options_
            _parse_arg(args, classifier);
            break;
        case detail::Classifier::NONE:
            // Probably a positional or something for a parent (sub)command
            retval = _parse_positional(args);
            if(retval && positionals_at_end_) {
                positional_only = true;
            }
            break;

            // LCOV_EXCL_START
        default:
            HorribleError("unrecognized classifier (you should not see this!)");
            // LCOV_EXCL_END
        }
        return retval;
    }

    /// Count the required remaining positional arguments
    size_t _count_remaining_positionals(bool required_only = false) const {
        size_t retval = 0;
        for(const Option_p &opt : options_)
            if(opt->get_positional() && (!required_only || opt->get_required()) && opt->get_items_expected() > 0 &&
               static_cast<int>(opt->count()) < opt->get_items_expected())
                retval = static_cast<size_t>(opt->get_items_expected()) - opt->count();

        return retval;
    }

    /// Count the required remaining positional arguments
    bool _has_remaining_positionals() const {
        for(const Option_p &opt : options_)
            if(opt->get_positional() &&
               ((opt->get_items_expected() < 0) || ((static_cast<int>(opt->count()) < opt->get_items_expected()))))
                return true;

        return false;
    }

    /// Parse a positional, go up the tree to check
    /// Return true if the positional was used false otherwise
    bool _parse_positional(std::vector<std::string> &args) {

        const std::string &positional = args.back();
        for(const Option_p &opt : options_) {
            // Eat options, one by one, until done
            if(opt->get_positional() &&
               (static_cast<int>(opt->count()) < opt->get_items_expected() || opt->get_items_expected() < 0)) {
                if(validate_positionals_) {
                    std::string pos = positional;
                    pos = opt->_validate(pos);
                    if(!pos.empty()) {
                        continue;
                    }
                }
                opt->add_result(positional);
                parse_order_.push_back(opt.get());
                args.pop_back();
                return true;
            }
        }

        for(auto &subc : subcommands_) {
            if((subc->name_.empty()) && (!subc->disabled_)) {
                if(subc->_parse_positional(args)) {
                    if(!subc->pre_parse_called_) {
                        subc->_trigger_pre_parse(args.size());
                    }
                    return true;
                }
            }
        }
        // let the parent deal with it if possible
        if(parent_ != nullptr && fallthrough_)
            return _get_fallthrough_parent()->_parse_positional(args);

        /// Try to find a local subcommand that is repeated
        auto com = _find_subcommand(args.back(), true, false);
        if(com != nullptr && (require_subcommand_max_ == 0 || require_subcommand_max_ > parsed_subcommands_.size())) {
            args.pop_back();
            com->_parse(args);
            return true;
        }
        /// now try one last gasp at subcommands that have been executed before, go to root app and try to find a
        /// subcommand in a broader way, if one exists let the parent deal with it
        auto parent_app = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
        com = parent_app->_find_subcommand(args.back(), true, false);
        if(com != nullptr && (com->parent_->require_subcommand_max_ == 0 ||
                              com->parent_->require_subcommand_max_ > com->parent_->parsed_subcommands_.size())) {
            return false;
        }

        if(positionals_at_end_) {
            throw CLI::ExtrasError(args);
        }
        /// If this is an option group don't deal with it
        if(parent_ != nullptr && name_.empty()) {
            return false;
        }
        /// We are out of other options this goes to missing
        _move_to_missing(detail::Classifier::NONE, positional);
        args.pop_back();
        if(prefix_command_) {
            while(!args.empty()) {
                _move_to_missing(detail::Classifier::NONE, args.back());
                args.pop_back();
            }
        }

        return true;
    }

    /// Locate a subcommand by name with two conditions, should disabled subcommands be ignored, and should used
    /// subcommands be ignored
    App *_find_subcommand(const std::string &subc_name, bool ignore_disabled, bool ignore_used) const noexcept {
        for(const App_p &com : subcommands_) {
            if(com->disabled_ && ignore_disabled)
                continue;
            if(com->get_name().empty()) {
                auto subc = com->_find_subcommand(subc_name, ignore_disabled, ignore_used);
                if(subc != nullptr) {
                    return subc;
                }
            } else if(com->check_name(subc_name)) {
                if((!*com) || !ignore_used)
                    return com.get();
            }
        }
        return nullptr;
    }

    /// Parse a subcommand, modify args and continue
    ///
    /// Unlike the others, this one will always allow fallthrough
    /// return true if the subcommand was processed false otherwise
    bool _parse_subcommand(std::vector<std::string> &args) {
        if(_count_remaining_positionals(/* required */ true) > 0) {
            _parse_positional(args);
            return true;
        }
        auto com = _find_subcommand(args.back(), true, true);
        if(com != nullptr) {
            args.pop_back();
            parsed_subcommands_.push_back(com);
            com->_parse(args);
            auto parent_app = com->parent_;
            while(parent_app != this) {
                parent_app->_trigger_pre_parse(args.size());
                parent_app->parsed_subcommands_.push_back(com);
                parent_app = parent_app->parent_;
            }
            return true;
        }

        if(parent_ == nullptr)
            throw HorribleError("Subcommand " + args.back() + " missing");
        return false;
    }

    /// Parse a short (false) or long (true) argument, must be at the top of the list
    /// return true if the argument was processed or false if nothing was done
    bool _parse_arg(std::vector<std::string> &args, detail::Classifier current_type) {

        std::string current = args.back();

        std::string arg_name;
        std::string value;
        std::string rest;

        switch(current_type) {
        case detail::Classifier::LONG:
            if(!detail::split_long(current, arg_name, value))
                throw HorribleError("Long parsed but missing (you should not see this):" + args.back());
            break;
        case detail::Classifier::SHORT:
            if(!detail::split_short(current, arg_name, rest))
                throw HorribleError("Short parsed but missing! You should not see this");
            break;
        case detail::Classifier::WINDOWS:
            if(!detail::split_windows_style(current, arg_name, value))
                throw HorribleError("windows option parsed but missing! You should not see this");
            break;
        case detail::Classifier::SUBCOMMAND:
        case detail::Classifier::POSITIONAL_MARK:
        case detail::Classifier::NONE:
        default:
            throw HorribleError("parsing got called with invalid option! You should not see this");
        }

        auto op_ptr =
            std::find_if(std::begin(options_), std::end(options_), [arg_name, current_type](const Option_p &opt) {
                if(current_type == detail::Classifier::LONG)
                    return opt->check_lname(arg_name);
                if(current_type == detail::Classifier::SHORT)
                    return opt->check_sname(arg_name);
                // this will only get called for detail::Classifier::WINDOWS
                return opt->check_lname(arg_name) || opt->check_sname(arg_name);
            });

        // Option not found
        if(op_ptr == std::end(options_)) {
            for(auto &subc : subcommands_) {
                if(subc->name_.empty() && !subc->disabled_) {
                    if(subc->_parse_arg(args, current_type)) {
                        if(!subc->pre_parse_called_) {
                            subc->_trigger_pre_parse(args.size());
                        }
                        return true;
                    }
                }
            }
            // If a subcommand, try the master command
            if(parent_ != nullptr && fallthrough_)
                return _get_fallthrough_parent()->_parse_arg(args, current_type);
            // don't capture missing if this is a nameless subcommand
            if(parent_ != nullptr && name_.empty()) {
                return false;
            }
            // Otherwise, add to missing
            args.pop_back();
            _move_to_missing(current_type, current);
            return true;
        }

        args.pop_back();

        // Get a reference to the pointer to make syntax bearable
        Option_p &op = *op_ptr;

        int num = op->get_items_expected();

        // Make sure we always eat the minimum for unlimited vectors
        int collected = 0;
        int result_count = 0;
        // deal with flag like things
        if(num == 0) {
            auto res = op->get_flag_value(arg_name, value);
            op->add_result(res);
            parse_order_.push_back(op.get());
        }
        // --this=value
        else if(!value.empty()) {
            op->add_result(value, result_count);
            parse_order_.push_back(op.get());
            collected += result_count;
            // If exact number expected
            if(num > 0)
                num = (num >= result_count) ? num - result_count : 0;

            // -Trest
        } else if(!rest.empty()) {
            op->add_result(rest, result_count);
            parse_order_.push_back(op.get());
            rest = "";
            collected += result_count;
            // If exact number expected
            if(num > 0)
                num = (num >= result_count) ? num - result_count : 0;
        }

        // Unlimited vector parser
        if(num < 0) {
            while(!args.empty() && _recognize(args.back(), false) == detail::Classifier::NONE) {
                if(collected >= -num) {
                    // We could break here for allow extras, but we don't

                    // If any positionals remain, don't keep eating
                    if(_count_remaining_positionals() > 0)
                        break;
                }
                op->add_result(args.back(), result_count);
                parse_order_.push_back(op.get());
                args.pop_back();
                collected += result_count;
            }

            // Allow -- to end an unlimited list and "eat" it
            if(!args.empty() && _recognize(args.back()) == detail::Classifier::POSITIONAL_MARK)
                args.pop_back();

        } else {
            while(num > 0 && !args.empty()) {
                std::string current_ = args.back();
                args.pop_back();
                op->add_result(current_, result_count);
                parse_order_.push_back(op.get());
                num -= result_count;
            }

            if(num > 0) {
                throw ArgumentMismatch::TypedAtLeast(op->get_name(), num, op->get_type_name());
            }
        }

        if(!rest.empty()) {
            rest = "-" + rest;
            args.push_back(rest);
        }
        return true;
    }

    /// Trigger the pre_parse callback if needed
    void _trigger_pre_parse(size_t remaining_args) {
        if(!pre_parse_called_) {
            pre_parse_called_ = true;
            if(pre_parse_callback_) {
                pre_parse_callback_(remaining_args);
            }
        } else if(immediate_callback_) {
            if(!name_.empty()) {
                auto pcnt = parsed_;
                auto extras = std::move(missing_);
                clear();
                parsed_ = pcnt;
                pre_parse_called_ = true;
                missing_ = std::move(extras);
            }
        }
    }

    /// Get the appropriate parent to fallthrough to which is the first one that has a name or the main app
    App *_get_fallthrough_parent() {
        if(parent_ == nullptr) {
            throw(HorribleError("No Valid parent"));
        }
        auto fallthrough_parent = parent_;
        while((fallthrough_parent->parent_ != nullptr) && (fallthrough_parent->get_name().empty())) {
            fallthrough_parent = fallthrough_parent->parent_;
        }
        return fallthrough_parent;
    }

    /// Helper function to place extra values in the most appropriate position
    void _move_to_missing(detail::Classifier val_type, const std::string &val) {
        if(allow_extras_ || subcommands_.empty()) {
            missing_.emplace_back(val_type, val);
            return;
        }
        // allow extra arguments to be places in an option group if it is allowed there
        for(auto &subc : subcommands_) {
            if(subc->name_.empty() && subc->allow_extras_) {
                subc->missing_.emplace_back(val_type, val);
                return;
            }
        }
        // if we haven't found any place to put them yet put them in missing
        missing_.emplace_back(val_type, val);
    }

  public:
    /// function that could be used by subclasses of App to shift options around into subcommands
    void _move_option(Option *opt, App *app) {
        if(opt == nullptr) {
            throw OptionNotFound("the option is NULL");
        }
        // verify that the give app is actually a subcommand
        bool found = false;
        for(auto &subc : subcommands_) {
            if(app == subc.get()) {
                found = true;
            }
        }
        if(!found) {
            throw OptionNotFound("The Given app is not a subcommand");
        }

        if((help_ptr_ == opt) || (help_all_ptr_ == opt))
            throw OptionAlreadyAdded("cannot move help options");

        if(config_ptr_ == opt)
            throw OptionAlreadyAdded("cannot move config file options");

        auto iterator =
            std::find_if(std::begin(options_), std::end(options_), [opt](const Option_p &v) { return v.get() == opt; });
        if(iterator != std::end(options_)) {
            const auto &opt_p = *iterator;
            if(std::find_if(std::begin(app->options_), std::end(app->options_), [&opt_p](const Option_p &v) {
                   return (*v == *opt_p);
               }) == std::end(app->options_)) {
                // only erase after the insertion was successful
                app->options_.push_back(std::move(*iterator));
                options_.erase(iterator);
            } else {
                throw OptionAlreadyAdded(opt->get_name());
            }
        } else {
            throw OptionNotFound("could not locate the given App");
        }
    }
};

/// Extension of App to better manage groups of options
class Option_group : public App {
  public:
    Option_group(std::string group_description, std::string group_name, App *parent)
        : App(std::move(group_description), "", parent) {
        group(group_name);
        // option groups should have automatic fallthrough
    }
    using App::add_option;
    /// Add an existing option to the Option_group
    Option *add_option(Option *opt) {
        if(get_parent() == nullptr) {
            throw OptionNotFound("Unable to locate the specified option");
        }
        get_parent()->_move_option(opt, this);
        return opt;
    }
    /// Add an existing option to the Option_group
    void add_options(Option *opt) { add_option(opt); }
    /// Add a bunch of options to the group
    template <typename... Args> void add_options(Option *opt, Args... args) {
        add_option(opt);
        add_options(args...);
    }
    using App::add_subcommand;
    /// Add an existing subcommand to be a member of an option_group
    App *add_subcommand(App *subcom) {
        App_p subc = subcom->get_parent()->get_subcommand_ptr(subcom);
        subc->get_parent()->remove_subcommand(subcom);
        add_subcommand(std::move(subc));
        return subcom;
    }
};
/// Helper function to enable one option group/subcommand when another is used
inline void TriggerOn(App *trigger_app, App *app_to_enable) {
    app_to_enable->enabled_by_default(false);
    app_to_enable->disabled_by_default();
    trigger_app->preparse_callback([app_to_enable](size_t) { app_to_enable->disabled(false); });
}

/// Helper function to enable one option group/subcommand when another is used
inline void TriggerOn(App *trigger_app, std::vector<App *> apps_to_enable) {
    for(auto &app : apps_to_enable) {
        app->enabled_by_default(false);
        app->disabled_by_default();
    }

    trigger_app->preparse_callback([apps_to_enable](size_t) {
        for(auto &app : apps_to_enable) {
            app->disabled(false);
        }
    });
}

/// Helper function to disable one option group/subcommand when another is used
inline void TriggerOff(App *trigger_app, App *app_to_enable) {
    app_to_enable->disabled_by_default(false);
    app_to_enable->enabled_by_default();
    trigger_app->preparse_callback([app_to_enable](size_t) { app_to_enable->disabled(); });
}

/// Helper function to disable one option group/subcommand when another is used
inline void TriggerOff(App *trigger_app, std::vector<App *> apps_to_enable) {
    for(auto &app : apps_to_enable) {
        app->disabled_by_default(false);
        app->enabled_by_default();
    }

    trigger_app->preparse_callback([apps_to_enable](size_t) {
        for(auto &app : apps_to_enable) {
            app->disabled();
        }
    });
}

namespace FailureMessage {

/// Printout a clean, simple message on error (the default in CLI11 1.5+)
inline std::string simple(const App *app, const Error &e) {
    std::string header = std::string(e.what()) + "\n";
    std::vector<std::string> names;

    // Collect names
    if(app->get_help_ptr() != nullptr)
        names.push_back(app->get_help_ptr()->get_name());

    if(app->get_help_all_ptr() != nullptr)
        names.push_back(app->get_help_all_ptr()->get_name());

    // If any names found, suggest those
    if(!names.empty())
        header += "Run with " + detail::join(names, " or ") + " for more information.\n";

    return header;
}

/// Printout the full help string on error (if this fn is set, the old default for CLI11)
inline std::string help(const App *app, const Error &e) {
    std::string header = std::string("ERROR: ") + e.get_name() + ": " + e.what() + "\n";
    header += app->help();
    return header;
}

} // namespace FailureMessage

namespace detail {
/// This class is simply to allow tests access to App's protected functions
struct AppFriend {

    /// Wrap _parse_short, perfectly forward arguments and return
    template <typename... Args>
    static auto parse_arg(App *app, Args &&... args) ->
        typename std::result_of<decltype (&App::_parse_arg)(App, Args...)>::type {
        return app->_parse_arg(std::forward<Args>(args)...);
    }

    /// Wrap _parse_subcommand, perfectly forward arguments and return
    template <typename... Args>
    static auto parse_subcommand(App *app, Args &&... args) ->
        typename std::result_of<decltype (&App::_parse_subcommand)(App, Args...)>::type {
        return app->_parse_subcommand(std::forward<Args>(args)...);
    }
    /// Wrap the fallthrough parent function to make sure that is working correctly
    static App *get_fallthrough_parent(App *app) { return app->_get_fallthrough_parent(); }
};
} // namespace detail

} // namespace CLI

// From CLI/Config.hpp:

namespace CLI {

inline std::string
ConfigINI::to_config(const App *app, bool default_also, bool write_description, std::string prefix) const {
    std::stringstream out;
    for(const Option *opt : app->get_options({})) {

        // Only process option with a long-name and configurable
        if(!opt->get_lnames().empty() && opt->get_configurable()) {
            std::string name = prefix + opt->get_lnames()[0];
            std::string value;

            // Non-flags
            if(opt->get_type_size() != 0) {

                // If the option was found on command line
                if(opt->count() > 0)
                    value = detail::ini_join(opt->results());

                // If the option has a default and is requested by optional argument
                else if(default_also && !opt->get_default_str().empty())
                    value = opt->get_default_str();
                // Flag, one passed
            } else if(opt->count() == 1) {
                value = "true";

                // Flag, multiple passed
            } else if(opt->count() > 1) {
                value = std::to_string(opt->count());

                // Flag, not present
            } else if(opt->count() == 0 && default_also) {
                value = "false";
            }

            if(!value.empty()) {
                if(write_description && opt->has_description()) {
                    if(static_cast<int>(out.tellp()) != 0) {
                        out << std::endl;
                    }
                    out << "; " << detail::fix_newlines("; ", opt->get_description()) << std::endl;
                }

                // Don't try to quote anything that is not size 1
                if(opt->get_items_expected() != 1)
                    out << name << "=" << value << std::endl;
                else
                    out << name << "=" << detail::add_quotes_if_needed(value) << std::endl;
            }
        }
    }

    for(const App *subcom : app->get_subcommands({}))
        out << to_config(subcom, default_also, write_description, prefix + subcom->get_name() + ".");

    return out.str();
}

} // namespace CLI

// From CLI/Formatter.hpp:

namespace CLI {

inline std::string
Formatter::make_group(std::string group, bool is_positional, std::vector<const Option *> opts) const {
    std::stringstream out;

    out << "\n" << group << ":\n";
    for(const Option *opt : opts) {
        out << make_option(opt, is_positional);
    }

    return out.str();
}

inline std::string Formatter::make_positionals(const App *app) const {
    std::vector<const Option *> opts =
        app->get_options([](const Option *opt) { return !opt->get_group().empty() && opt->get_positional(); });

    if(opts.empty())
        return std::string();
    else
        return make_group(get_label("Positionals"), true, opts);
}

inline std::string Formatter::make_groups(const App *app, AppFormatMode mode) const {
    std::stringstream out;
    std::vector<std::string> groups = app->get_groups();

    // Options
    for(const std::string &group : groups) {
        std::vector<const Option *> opts = app->get_options([app, mode, &group](const Option *opt) {
            return opt->get_group() == group                    // Must be in the right group
                   && opt->nonpositional()                      // Must not be a positional
                   && (mode != AppFormatMode::Sub               // If mode is Sub, then
                       || (app->get_help_ptr() != opt           // Ignore help pointer
                           && app->get_help_all_ptr() != opt)); // Ignore help all pointer
        });
        if(!group.empty() && !opts.empty()) {
            out << make_group(group, false, opts);

            if(group != groups.back())
                out << "\n";
        }
    }

    return out.str();
}

inline std::string Formatter::make_description(const App *app) const {
    std::string desc = app->get_description();
    auto min_options = app->get_require_option_min();
    auto max_options = app->get_require_option_max();
    if(app->get_required()) {
        desc += " REQUIRED ";
    }
    if((max_options == min_options) && (min_options > 0)) {
        if(min_options == 1) {
            desc += " \n[Exactly 1 of the following options is required]";
        } else {
            desc += " \n[Exactly " + std::to_string(min_options) + "options from the following list are required]";
        }
    } else if(max_options > 0) {
        if(min_options > 0) {
            desc += " \n[Between " + std::to_string(min_options) + " and " + std::to_string(max_options) +
                    " of the follow options are required]";
        } else {
            desc += " \n[At most " + std::to_string(max_options) + " of the following options are allowed]";
        }
    } else if(min_options > 0) {
        desc += " \n[At least " + std::to_string(min_options) + " of the following options are required]";
    }
    return (!desc.empty()) ? desc + "\n" : std::string{};
}

inline std::string Formatter::make_usage(const App *app, std::string name) const {
    std::stringstream out;

    out << get_label("Usage") << ":" << (name.empty() ? "" : " ") << name;

    std::vector<std::string> groups = app->get_groups();

    // Print an Options badge if any options exist
    std::vector<const Option *> non_pos_options =
        app->get_options([](const Option *opt) { return opt->nonpositional(); });
    if(!non_pos_options.empty())
        out << " [" << get_label("OPTIONS") << "]";

    // Positionals need to be listed here
    std::vector<const Option *> positionals = app->get_options([](const Option *opt) { return opt->get_positional(); });

    // Print out positionals if any are left
    if(!positionals.empty()) {
        // Convert to help names
        std::vector<std::string> positional_names(positionals.size());
        std::transform(positionals.begin(), positionals.end(), positional_names.begin(), [this](const Option *opt) {
            return make_option_usage(opt);
        });

        out << " " << detail::join(positional_names, " ");
    }

    // Add a marker if subcommands are expected or optional
    if(!app->get_subcommands(
               [](const CLI::App *subc) { return ((!subc->get_disabled()) && (!subc->get_name().empty())); })
            .empty()) {
        out << " " << (app->get_require_subcommand_min() == 0 ? "[" : "")
            << get_label(app->get_require_subcommand_max() < 2 || app->get_require_subcommand_min() > 1 ? "SUBCOMMAND"
                                                                                                        : "SUBCOMMANDS")
            << (app->get_require_subcommand_min() == 0 ? "]" : "");
    }

    out << std::endl;

    return out.str();
}

inline std::string Formatter::make_footer(const App *app) const {
    std::string footer = app->get_footer();
    if(!footer.empty())
        return footer + "\n";
    else
        return "";
}

inline std::string Formatter::make_help(const App *app, std::string name, AppFormatMode mode) const {

    // This immediately forwards to the make_expanded method. This is done this way so that subcommands can
    // have overridden formatters
    if(mode == AppFormatMode::Sub)
        return make_expanded(app);

    std::stringstream out;
    if((app->get_name().empty()) && (app->get_parent() != nullptr)) {
        if(app->get_group() != "Subcommands") {
            out << app->get_group() << ':';
        }
    }

    out << make_description(app);
    out << make_usage(app, name);
    out << make_positionals(app);
    out << make_groups(app, mode);
    out << make_subcommands(app, mode);
    out << make_footer(app);

    return out.str();
}

inline std::string Formatter::make_subcommands(const App *app, AppFormatMode mode) const {
    std::stringstream out;

    std::vector<const App *> subcommands = app->get_subcommands({});

    // Make a list in definition order of the groups seen
    std::vector<std::string> subcmd_groups_seen;
    for(const App *com : subcommands) {
        if(com->get_name().empty()) {
            out << make_expanded(com);
            continue;
        }
        std::string group_key = com->get_group();
        if(!group_key.empty() &&
           std::find_if(subcmd_groups_seen.begin(), subcmd_groups_seen.end(), [&group_key](std::string a) {
               return detail::to_lower(a) == detail::to_lower(group_key);
           }) == subcmd_groups_seen.end())
            subcmd_groups_seen.push_back(group_key);
    }

    // For each group, filter out and print subcommands
    for(const std::string &group : subcmd_groups_seen) {
        out << "\n" << group << ":\n";
        std::vector<const App *> subcommands_group = app->get_subcommands(
            [&group](const App *sub_app) { return detail::to_lower(sub_app->get_group()) == detail::to_lower(group); });
        for(const App *new_com : subcommands_group) {
            if(new_com->get_name().empty())
                continue;
            if(mode != AppFormatMode::All) {
                out << make_subcommand(new_com);
            } else {
                out << new_com->help(new_com->get_name(), AppFormatMode::Sub);
                out << "\n";
            }
        }
    }

    return out.str();
}

inline std::string Formatter::make_subcommand(const App *sub) const {
    std::stringstream out;
    detail::format_help(out, sub->get_name(), sub->get_description(), column_width_);
    return out.str();
}

inline std::string Formatter::make_expanded(const App *sub) const {
    std::stringstream out;
    out << sub->get_display_name() << "\n";

    out << make_description(sub);
    out << make_positionals(sub);
    out << make_groups(sub, AppFormatMode::Sub);
    out << make_subcommands(sub, AppFormatMode::Sub);

    // Drop blank spaces
    std::string tmp = detail::find_and_replace(out.str(), "\n\n", "\n");
    tmp = tmp.substr(0, tmp.size() - 1); // Remove the final '\n'

    // Indent all but the first line (the name)
    return detail::find_and_replace(tmp, "\n", "\n  ") + "\n";
}

inline std::string Formatter::make_option_name(const Option *opt, bool is_positional) const {
    if(is_positional)
        return opt->get_name(true, false);
    else
        return opt->get_name(false, true);
}

inline std::string Formatter::make_option_opts(const Option *opt) const {
    std::stringstream out;

    if(opt->get_type_size() != 0) {
        if(!opt->get_type_name().empty())
            out << " " << get_label(opt->get_type_name());
        if(!opt->get_default_str().empty())
            out << "=" << opt->get_default_str();
        if(opt->get_expected() > 1)
            out << " x " << opt->get_expected();
        if(opt->get_expected() == -1)
            out << " ...";
        if(opt->get_required())
            out << " " << get_label("REQUIRED");
    }
    if(!opt->get_envname().empty())
        out << " (" << get_label("Env") << ":" << opt->get_envname() << ")";
    if(!opt->get_needs().empty()) {
        out << " " << get_label("Needs") << ":";
        for(const Option *op : opt->get_needs())
            out << " " << op->get_name();
    }
    if(!opt->get_excludes().empty()) {
        out << " " << get_label("Excludes") << ":";
        for(const Option *op : opt->get_excludes())
            out << " " << op->get_name();
    }
    return out.str();
}

inline std::string Formatter::make_option_desc(const Option *opt) const { return opt->get_description(); }

inline std::string Formatter::make_option_usage(const Option *opt) const {
    // Note that these are positionals usages
    std::stringstream out;
    out << make_option_name(opt, true);

    if(opt->get_expected() > 1)
        out << "(" << std::to_string(opt->get_expected()) << "x)";
    else if(opt->get_expected() < 0)
        out << "...";
    return opt->get_required() ? out.str() : "[" + out.str() + "]";
}

} // namespace CLI

back to top