Revision b90d72a6bfdb5e5c62cd223a8cdf4045bfbcb94d authored by Will Deacon on 12 January 2021, 22:18:55 UTC, committed by Catalin Marinas on 13 January 2021, 15:08:41 UTC
This reverts commit 367c820ef08082e68df8a3bc12e62393af21e4b5.

lockup_detector_init() makes heavy use of per-cpu variables and must be
called with preemption disabled. Usually, it's handled early during boot
in kernel_init_freeable(), before SMP has been initialised.

Since we do not know whether or not our PMU interrupt can be signalled
as an NMI until considerably later in the boot process, the Arm PMU
driver attempts to re-initialise the lockup detector off the back of a
device_initcall(). Unfortunately, this is called from preemptible
context and results in the following splat:

  | BUG: using smp_processor_id() in preemptible [00000000] code: swapper/0/1
  | caller is debug_smp_processor_id+0x20/0x2c
  | CPU: 2 PID: 1 Comm: swapper/0 Not tainted 5.10.0+ #276
  | Hardware name: linux,dummy-virt (DT)
  | Call trace:
  |   dump_backtrace+0x0/0x3c0
  |   show_stack+0x20/0x6c
  |   dump_stack+0x2f0/0x42c
  |   check_preemption_disabled+0x1cc/0x1dc
  |   debug_smp_processor_id+0x20/0x2c
  |   hardlockup_detector_event_create+0x34/0x18c
  |   hardlockup_detector_perf_init+0x2c/0x134
  |   watchdog_nmi_probe+0x18/0x24
  |   lockup_detector_init+0x44/0xa8
  |   armv8_pmu_driver_init+0x54/0x78
  |   do_one_initcall+0x184/0x43c
  |   kernel_init_freeable+0x368/0x380
  |   kernel_init+0x1c/0x1cc
  |   ret_from_fork+0x10/0x30

Rather than bodge this with raw_smp_processor_id() or randomly disabling
preemption, simply revert the culprit for now until we figure out how to
do this properly.

Reported-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20201221162249.3119-1-lecopzer.chen@mediatek.com
Link: https://lore.kernel.org/r/20210112221855.10666-1-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
1 parent df06824
Raw File
nhpoly1305.c
// SPDX-License-Identifier: GPL-2.0
/*
 * NHPoly1305 - ε-almost-∆-universal hash function for Adiantum
 *
 * Copyright 2018 Google LLC
 */

/*
 * "NHPoly1305" is the main component of Adiantum hashing.
 * Specifically, it is the calculation
 *
 *	H_L ← Poly1305_{K_L}(NH_{K_N}(pad_{128}(L)))
 *
 * from the procedure in section 6.4 of the Adiantum paper [1].  It is an
 * ε-almost-∆-universal (ε-∆U) hash function for equal-length inputs over
 * Z/(2^{128}Z), where the "∆" operation is addition.  It hashes 1024-byte
 * chunks of the input with the NH hash function [2], reducing the input length
 * by 32x.  The resulting NH digests are evaluated as a polynomial in
 * GF(2^{130}-5), like in the Poly1305 MAC [3].  Note that the polynomial
 * evaluation by itself would suffice to achieve the ε-∆U property; NH is used
 * for performance since it's over twice as fast as Poly1305.
 *
 * This is *not* a cryptographic hash function; do not use it as such!
 *
 * [1] Adiantum: length-preserving encryption for entry-level processors
 *     (https://eprint.iacr.org/2018/720.pdf)
 * [2] UMAC: Fast and Secure Message Authentication
 *     (https://fastcrypto.org/umac/umac_proc.pdf)
 * [3] The Poly1305-AES message-authentication code
 *     (https://cr.yp.to/mac/poly1305-20050329.pdf)
 */

#include <asm/unaligned.h>
#include <crypto/algapi.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/poly1305.h>
#include <crypto/nhpoly1305.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/module.h>

static void nh_generic(const u32 *key, const u8 *message, size_t message_len,
		       __le64 hash[NH_NUM_PASSES])
{
	u64 sums[4] = { 0, 0, 0, 0 };

	BUILD_BUG_ON(NH_PAIR_STRIDE != 2);
	BUILD_BUG_ON(NH_NUM_PASSES != 4);

	while (message_len) {
		u32 m0 = get_unaligned_le32(message + 0);
		u32 m1 = get_unaligned_le32(message + 4);
		u32 m2 = get_unaligned_le32(message + 8);
		u32 m3 = get_unaligned_le32(message + 12);

		sums[0] += (u64)(u32)(m0 + key[ 0]) * (u32)(m2 + key[ 2]);
		sums[1] += (u64)(u32)(m0 + key[ 4]) * (u32)(m2 + key[ 6]);
		sums[2] += (u64)(u32)(m0 + key[ 8]) * (u32)(m2 + key[10]);
		sums[3] += (u64)(u32)(m0 + key[12]) * (u32)(m2 + key[14]);
		sums[0] += (u64)(u32)(m1 + key[ 1]) * (u32)(m3 + key[ 3]);
		sums[1] += (u64)(u32)(m1 + key[ 5]) * (u32)(m3 + key[ 7]);
		sums[2] += (u64)(u32)(m1 + key[ 9]) * (u32)(m3 + key[11]);
		sums[3] += (u64)(u32)(m1 + key[13]) * (u32)(m3 + key[15]);
		key += NH_MESSAGE_UNIT / sizeof(key[0]);
		message += NH_MESSAGE_UNIT;
		message_len -= NH_MESSAGE_UNIT;
	}

	hash[0] = cpu_to_le64(sums[0]);
	hash[1] = cpu_to_le64(sums[1]);
	hash[2] = cpu_to_le64(sums[2]);
	hash[3] = cpu_to_le64(sums[3]);
}

/* Pass the next NH hash value through Poly1305 */
static void process_nh_hash_value(struct nhpoly1305_state *state,
				  const struct nhpoly1305_key *key)
{
	BUILD_BUG_ON(NH_HASH_BYTES % POLY1305_BLOCK_SIZE != 0);

	poly1305_core_blocks(&state->poly_state, &key->poly_key, state->nh_hash,
			     NH_HASH_BYTES / POLY1305_BLOCK_SIZE, 1);
}

/*
 * Feed the next portion of the source data, as a whole number of 16-byte
 * "NH message units", through NH and Poly1305.  Each NH hash is taken over
 * 1024 bytes, except possibly the final one which is taken over a multiple of
 * 16 bytes up to 1024.  Also, in the case where data is passed in misaligned
 * chunks, we combine partial hashes; the end result is the same either way.
 */
static void nhpoly1305_units(struct nhpoly1305_state *state,
			     const struct nhpoly1305_key *key,
			     const u8 *src, unsigned int srclen, nh_t nh_fn)
{
	do {
		unsigned int bytes;

		if (state->nh_remaining == 0) {
			/* Starting a new NH message */
			bytes = min_t(unsigned int, srclen, NH_MESSAGE_BYTES);
			nh_fn(key->nh_key, src, bytes, state->nh_hash);
			state->nh_remaining = NH_MESSAGE_BYTES - bytes;
		} else {
			/* Continuing a previous NH message */
			__le64 tmp_hash[NH_NUM_PASSES];
			unsigned int pos;
			int i;

			pos = NH_MESSAGE_BYTES - state->nh_remaining;
			bytes = min(srclen, state->nh_remaining);
			nh_fn(&key->nh_key[pos / 4], src, bytes, tmp_hash);
			for (i = 0; i < NH_NUM_PASSES; i++)
				le64_add_cpu(&state->nh_hash[i],
					     le64_to_cpu(tmp_hash[i]));
			state->nh_remaining -= bytes;
		}
		if (state->nh_remaining == 0)
			process_nh_hash_value(state, key);
		src += bytes;
		srclen -= bytes;
	} while (srclen);
}

int crypto_nhpoly1305_setkey(struct crypto_shash *tfm,
			     const u8 *key, unsigned int keylen)
{
	struct nhpoly1305_key *ctx = crypto_shash_ctx(tfm);
	int i;

	if (keylen != NHPOLY1305_KEY_SIZE)
		return -EINVAL;

	poly1305_core_setkey(&ctx->poly_key, key);
	key += POLY1305_BLOCK_SIZE;

	for (i = 0; i < NH_KEY_WORDS; i++)
		ctx->nh_key[i] = get_unaligned_le32(key + i * sizeof(u32));

	return 0;
}
EXPORT_SYMBOL(crypto_nhpoly1305_setkey);

int crypto_nhpoly1305_init(struct shash_desc *desc)
{
	struct nhpoly1305_state *state = shash_desc_ctx(desc);

	poly1305_core_init(&state->poly_state);
	state->buflen = 0;
	state->nh_remaining = 0;
	return 0;
}
EXPORT_SYMBOL(crypto_nhpoly1305_init);

int crypto_nhpoly1305_update_helper(struct shash_desc *desc,
				    const u8 *src, unsigned int srclen,
				    nh_t nh_fn)
{
	struct nhpoly1305_state *state = shash_desc_ctx(desc);
	const struct nhpoly1305_key *key = crypto_shash_ctx(desc->tfm);
	unsigned int bytes;

	if (state->buflen) {
		bytes = min(srclen, (int)NH_MESSAGE_UNIT - state->buflen);
		memcpy(&state->buffer[state->buflen], src, bytes);
		state->buflen += bytes;
		if (state->buflen < NH_MESSAGE_UNIT)
			return 0;
		nhpoly1305_units(state, key, state->buffer, NH_MESSAGE_UNIT,
				 nh_fn);
		state->buflen = 0;
		src += bytes;
		srclen -= bytes;
	}

	if (srclen >= NH_MESSAGE_UNIT) {
		bytes = round_down(srclen, NH_MESSAGE_UNIT);
		nhpoly1305_units(state, key, src, bytes, nh_fn);
		src += bytes;
		srclen -= bytes;
	}

	if (srclen) {
		memcpy(state->buffer, src, srclen);
		state->buflen = srclen;
	}
	return 0;
}
EXPORT_SYMBOL(crypto_nhpoly1305_update_helper);

int crypto_nhpoly1305_update(struct shash_desc *desc,
			     const u8 *src, unsigned int srclen)
{
	return crypto_nhpoly1305_update_helper(desc, src, srclen, nh_generic);
}
EXPORT_SYMBOL(crypto_nhpoly1305_update);

int crypto_nhpoly1305_final_helper(struct shash_desc *desc, u8 *dst, nh_t nh_fn)
{
	struct nhpoly1305_state *state = shash_desc_ctx(desc);
	const struct nhpoly1305_key *key = crypto_shash_ctx(desc->tfm);

	if (state->buflen) {
		memset(&state->buffer[state->buflen], 0,
		       NH_MESSAGE_UNIT - state->buflen);
		nhpoly1305_units(state, key, state->buffer, NH_MESSAGE_UNIT,
				 nh_fn);
	}

	if (state->nh_remaining)
		process_nh_hash_value(state, key);

	poly1305_core_emit(&state->poly_state, NULL, dst);
	return 0;
}
EXPORT_SYMBOL(crypto_nhpoly1305_final_helper);

int crypto_nhpoly1305_final(struct shash_desc *desc, u8 *dst)
{
	return crypto_nhpoly1305_final_helper(desc, dst, nh_generic);
}
EXPORT_SYMBOL(crypto_nhpoly1305_final);

static struct shash_alg nhpoly1305_alg = {
	.base.cra_name		= "nhpoly1305",
	.base.cra_driver_name	= "nhpoly1305-generic",
	.base.cra_priority	= 100,
	.base.cra_ctxsize	= sizeof(struct nhpoly1305_key),
	.base.cra_module	= THIS_MODULE,
	.digestsize		= POLY1305_DIGEST_SIZE,
	.init			= crypto_nhpoly1305_init,
	.update			= crypto_nhpoly1305_update,
	.final			= crypto_nhpoly1305_final,
	.setkey			= crypto_nhpoly1305_setkey,
	.descsize		= sizeof(struct nhpoly1305_state),
};

static int __init nhpoly1305_mod_init(void)
{
	return crypto_register_shash(&nhpoly1305_alg);
}

static void __exit nhpoly1305_mod_exit(void)
{
	crypto_unregister_shash(&nhpoly1305_alg);
}

subsys_initcall(nhpoly1305_mod_init);
module_exit(nhpoly1305_mod_exit);

MODULE_DESCRIPTION("NHPoly1305 ε-almost-∆-universal hash function");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
MODULE_ALIAS_CRYPTO("nhpoly1305");
MODULE_ALIAS_CRYPTO("nhpoly1305-generic");
back to top