Revision b995ce76b9eb71a302a3716e08502ee0d2705ed0 authored by Alec Jacobson on 06 June 2018, 23:03:22 UTC, committed by Alec Jacobson on 06 June 2018, 23:03:22 UTC
1 parent 1b5700d
UT_BVH.h
/*
* Copyright (c) 2018 Side Effects Software Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* COMMENTS:
* Bounding Volume Hierarchy (BVH) implementation.
* To call functions not implemented here, also include UT_BVHImpl.h
*/
#pragma once
#ifndef __HDK_UT_BVH_h__
#define __HDK_UT_BVH_h__
#include "UT_FixedVector.h"
#include "UT_SmallArray.h"
#include "SYS/SYS_Types.h"
#include <limits>
#include <memory>
template<typename T> class UT_Array;
class v4uf;
class v4uu;
namespace HDK_Sample {
namespace UT {
template<typename T,uint NAXES>
struct Box {
T vals[NAXES][2];
SYS_FORCE_INLINE Box() noexcept = default;
SYS_FORCE_INLINE constexpr Box(const Box &other) noexcept = default;
SYS_FORCE_INLINE constexpr Box(Box &&other) noexcept = default;
SYS_FORCE_INLINE Box& operator=(const Box &other) noexcept = default;
SYS_FORCE_INLINE Box& operator=(Box &&other) noexcept = default;
template<typename S>
SYS_FORCE_INLINE Box(const Box<S,NAXES>& other) noexcept {
static_assert((std::is_pod<Box<T,NAXES>>::value) || !std::is_pod<T>::value,
"UT::Box should be POD, for better performance in UT_Array, etc.");
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = T(other.vals[axis][0]);
vals[axis][1] = T(other.vals[axis][1]);
}
}
template<typename S,bool INSTANTIATED>
SYS_FORCE_INLINE Box(const UT_FixedVector<S,NAXES,INSTANTIATED>& pt) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = pt[axis];
vals[axis][1] = pt[axis];
}
}
template<typename S>
SYS_FORCE_INLINE Box& operator=(const Box<S,NAXES>& other) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = T(other.vals[axis][0]);
vals[axis][1] = T(other.vals[axis][1]);
}
return *this;
}
SYS_FORCE_INLINE const T* operator[](const size_t axis) const noexcept {
UT_ASSERT_P(axis < NAXES);
return vals[axis];
}
SYS_FORCE_INLINE T* operator[](const size_t axis) noexcept {
UT_ASSERT_P(axis < NAXES);
return vals[axis];
}
SYS_FORCE_INLINE void initBounds() noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = std::numeric_limits<T>::max();
vals[axis][1] = -std::numeric_limits<T>::max();
}
}
/// Copy the source box.
/// NOTE: This is so that in templated code that may have a Box or a
/// UT_FixedVector, it can call initBounds and still work.
SYS_FORCE_INLINE void initBounds(const Box<T,NAXES>& src) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = src.vals[axis][0];
vals[axis][1] = src.vals[axis][1];
}
}
/// Initialize with the union of the source boxes.
/// NOTE: This is so that in templated code that may have Box's or a
/// UT_FixedVector's, it can call initBounds and still work.
SYS_FORCE_INLINE void initBoundsUnordered(const Box<T,NAXES>& src0, const Box<T,NAXES>& src1) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = SYSmin(src0.vals[axis][0], src1.vals[axis][0]);
vals[axis][1] = SYSmax(src0.vals[axis][1], src1.vals[axis][1]);
}
}
SYS_FORCE_INLINE void combine(const Box<T,NAXES>& src) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
T& minv = vals[axis][0];
T& maxv = vals[axis][1];
const T curminv = src.vals[axis][0];
const T curmaxv = src.vals[axis][1];
minv = (minv < curminv) ? minv : curminv;
maxv = (maxv > curmaxv) ? maxv : curmaxv;
}
}
SYS_FORCE_INLINE void enlargeBounds(const Box<T,NAXES>& src) noexcept {
combine(src);
}
template<typename S,bool INSTANTIATED>
SYS_FORCE_INLINE
void initBounds(const UT_FixedVector<S,NAXES,INSTANTIATED>& pt) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = pt[axis];
vals[axis][1] = pt[axis];
}
}
template<bool INSTANTIATED>
SYS_FORCE_INLINE
void initBounds(const UT_FixedVector<T,NAXES,INSTANTIATED>& min, const UT_FixedVector<T,NAXES,INSTANTIATED>& max) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = min[axis];
vals[axis][1] = max[axis];
}
}
template<bool INSTANTIATED>
SYS_FORCE_INLINE
void initBoundsUnordered(const UT_FixedVector<T,NAXES,INSTANTIATED>& p0, const UT_FixedVector<T,NAXES,INSTANTIATED>& p1) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = SYSmin(p0[axis], p1[axis]);
vals[axis][1] = SYSmax(p0[axis], p1[axis]);
}
}
template<bool INSTANTIATED>
SYS_FORCE_INLINE
void enlargeBounds(const UT_FixedVector<T,NAXES,INSTANTIATED>& pt) noexcept {
for (uint axis = 0; axis < NAXES; ++axis) {
vals[axis][0] = SYSmin(vals[axis][0], pt[axis]);
vals[axis][1] = SYSmax(vals[axis][1], pt[axis]);
}
}
SYS_FORCE_INLINE
UT_FixedVector<T,NAXES> getMin() const noexcept {
UT_FixedVector<T,NAXES> v;
for (uint axis = 0; axis < NAXES; ++axis) {
v[axis] = vals[axis][0];
}
return v;
}
SYS_FORCE_INLINE
UT_FixedVector<T,NAXES> getMax() const noexcept {
UT_FixedVector<T,NAXES> v;
for (uint axis = 0; axis < NAXES; ++axis) {
v[axis] = vals[axis][1];
}
return v;
}
T diameter2() const noexcept {
T diff = (vals[0][1]-vals[0][0]);
T sum = diff*diff;
for (uint axis = 1; axis < NAXES; ++axis) {
diff = (vals[axis][1]-vals[axis][0]);
sum += diff*diff;
}
return sum;
}
T volume() const noexcept {
T product = (vals[0][1]-vals[0][0]);
for (uint axis = 1; axis < NAXES; ++axis) {
product *= (vals[axis][1]-vals[axis][0]);
}
return product;
}
T half_surface_area() const noexcept {
if (NAXES==1) {
// NOTE: Although this should technically be 1,
// that doesn't make any sense as a heuristic,
// so we fall back to the "volume" of this box.
return (vals[0][1]-vals[0][0]);
}
if (NAXES==2) {
const T d0 = (vals[0][1]-vals[0][0]);
const T d1 = (vals[1][1]-vals[1][0]);
return d0 + d1;
}
if (NAXES==3) {
const T d0 = (vals[0][1]-vals[0][0]);
const T d1 = (vals[1][1]-vals[1][0]);
const T d2 = (vals[2][1]-vals[2][0]);
return d0*d1 + d1*d2 + d2*d0;
}
if (NAXES==4) {
const T d0 = (vals[0][1]-vals[0][0]);
const T d1 = (vals[1][1]-vals[1][0]);
const T d2 = (vals[2][1]-vals[2][0]);
const T d3 = (vals[3][1]-vals[3][0]);
// This is just d0d1d2 + d1d2d3 + d2d3d0 + d3d0d1 refactored.
const T d0d1 = d0*d1;
const T d2d3 = d2*d3;
return d0d1*(d2+d3) + d2d3*(d0+d1);
}
T sum = 0;
for (uint skipped_axis = 0; skipped_axis < NAXES; ++skipped_axis) {
T product = 1;
for (uint axis = 0; axis < NAXES; ++axis) {
if (axis != skipped_axis) {
product *= (vals[axis][1]-vals[axis][0]);
}
}
sum += product;
}
return sum;
}
T axis_sum() const noexcept {
T sum = (vals[0][1]-vals[0][0]);
for (uint axis = 1; axis < NAXES; ++axis) {
sum += (vals[axis][1]-vals[axis][0]);
}
return sum;
}
template<bool INSTANTIATED0,bool INSTANTIATED1>
SYS_FORCE_INLINE void intersect(
T &box_tmin,
T &box_tmax,
const UT_FixedVector<uint,NAXES,INSTANTIATED0> &signs,
const UT_FixedVector<T,NAXES,INSTANTIATED1> &origin,
const UT_FixedVector<T,NAXES,INSTANTIATED1> &inverse_direction
) const noexcept {
for (int axis = 0; axis < NAXES; ++axis)
{
uint sign = signs[axis];
T t1 = (vals[axis][sign] - origin[axis]) * inverse_direction[axis];
T t2 = (vals[axis][sign^1] - origin[axis]) * inverse_direction[axis];
box_tmin = SYSmax(t1, box_tmin);
box_tmax = SYSmin(t2, box_tmax);
}
}
SYS_FORCE_INLINE void intersect(const Box& other, Box& dest) const noexcept {
for (int axis = 0; axis < NAXES; ++axis)
{
dest.vals[axis][0] = SYSmax(vals[axis][0], other.vals[axis][0]);
dest.vals[axis][1] = SYSmin(vals[axis][1], other.vals[axis][1]);
}
}
template<bool INSTANTIATED>
SYS_FORCE_INLINE T minDistance2(
const UT_FixedVector<T,NAXES,INSTANTIATED> &p
) const noexcept {
T diff = SYSmax(SYSmax(vals[0][0]-p[0], p[0]-vals[0][1]), T(0.0f));
T d2 = diff*diff;
for (int axis = 1; axis < NAXES; ++axis)
{
diff = SYSmax(SYSmax(vals[axis][0]-p[axis], p[axis]-vals[axis][1]), T(0.0f));
d2 += diff*diff;
}
return d2;
}
template<bool INSTANTIATED>
SYS_FORCE_INLINE T maxDistance2(
const UT_FixedVector<T,NAXES,INSTANTIATED> &p
) const noexcept {
T diff = SYSmax(p[0]-vals[0][0], vals[0][1]-p[0]);
T d2 = diff*diff;
for (int axis = 1; axis < NAXES; ++axis)
{
diff = SYSmax(p[axis]-vals[axis][0], vals[axis][1]-p[axis]);
d2 += diff*diff;
}
return d2;
}
};
/// Used by BVH::init to specify the heuristic to use for choosing between different box splits.
/// I tried putting this inside the BVH class, but I had difficulty getting it to compile.
enum class BVH_Heuristic {
/// Tries to minimize the sum of axis lengths of the boxes.
/// This is useful for applications where the probability of a box being applicable to a
/// query is proportional to the "length", e.g. the probability of a random infinite plane
/// intersecting the box.
BOX_PERIMETER,
/// Tries to minimize the "surface area" of the boxes.
/// In 3D, uses the surface area; in 2D, uses the perimeter; in 1D, uses the axis length.
/// This is what most applications, e.g. ray tracing, should use, particularly when the
/// probability of a box being applicable to a query is proportional to the surface "area",
/// e.g. the probability of a random ray hitting the box.
///
/// NOTE: USE THIS ONE IF YOU ARE UNSURE!
BOX_AREA,
/// Tries to minimize the "volume" of the boxes.
/// Uses the product of all axis lengths as a heuristic, (volume in 3D, area in 2D, length in 1D).
/// This is useful for applications where the probability of a box being applicable to a
/// query is proportional to the "volume", e.g. the probability of a random point being inside the box.
BOX_VOLUME,
/// Tries to minimize the "radii" of the boxes (i.e. the distance from the centre to a corner).
/// This is useful for applications where the probability of a box being applicable to a
/// query is proportional to the distance to the box centre, e.g. the probability of a random
/// infinite plane being within the "radius" of the centre.
BOX_RADIUS,
/// Tries to minimize the squared "radii" of the boxes (i.e. the squared distance from the centre to a corner).
/// This is useful for applications where the probability of a box being applicable to a
/// query is proportional to the squared distance to the box centre, e.g. the probability of a random
/// ray passing within the "radius" of the centre.
BOX_RADIUS2,
/// Tries to minimize the cubed "radii" of the boxes (i.e. the cubed distance from the centre to a corner).
/// This is useful for applications where the probability of a box being applicable to a
/// query is proportional to the cubed distance to the box centre, e.g. the probability of a random
/// point being within the "radius" of the centre.
BOX_RADIUS3,
/// Tries to minimize the depth of the tree by primarily splitting at the median of the max axis.
/// It may fall back to minimizing the area, but the tree depth should be unaffected.
///
/// FIXME: This is not fully implemented yet.
MEDIAN_MAX_AXIS
};
template<uint N>
class BVH {
public:
using INT_TYPE = uint;
struct Node {
INT_TYPE child[N];
static constexpr INT_TYPE theN = N;
static constexpr INT_TYPE EMPTY = INT_TYPE(-1);
static constexpr INT_TYPE INTERNAL_BIT = (INT_TYPE(1)<<(sizeof(INT_TYPE)*8 - 1));
SYS_FORCE_INLINE static INT_TYPE markInternal(INT_TYPE internal_node_num) noexcept {
return internal_node_num | INTERNAL_BIT;
}
SYS_FORCE_INLINE static bool isInternal(INT_TYPE node_int) noexcept {
return (node_int & INTERNAL_BIT) != 0;
}
SYS_FORCE_INLINE static INT_TYPE getInternalNum(INT_TYPE node_int) noexcept {
return node_int & ~INTERNAL_BIT;
}
};
private:
std::unique_ptr<Node[]> myRoot;
INT_TYPE myNumNodes;
public:
BVH() noexcept : myRoot(nullptr), myNumNodes(0) {}
template<BVH_Heuristic H,typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE=INT_TYPE>
void init(const BOX_TYPE* boxes, const INT_TYPE nboxes, SRC_INT_TYPE* indices=nullptr, bool reorder_indices=false, INT_TYPE max_items_per_leaf=1) noexcept;
template<BVH_Heuristic H,typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE=INT_TYPE>
void init(const Box<T,NAXES>& axes_minmax, const BOX_TYPE* boxes, const INT_TYPE nboxes, SRC_INT_TYPE* indices=nullptr, bool reorder_indices=false, INT_TYPE max_items_per_leaf=1) noexcept;
INT_TYPE getNumNodes() const noexcept
{
return myNumNodes;
}
const Node *getNodes() const noexcept
{
return myRoot.get();
}
void clear() noexcept {
myRoot.reset();
myNumNodes = 0;
}
/// For each node, this effectively does:
/// LOCAL_DATA local_data[MAX_ORDER];
/// bool descend = functors.pre(nodei, parent_data);
/// if (!descend)
/// return;
/// for each child {
/// if (isitem(child))
/// functors.item(getitemi(child), nodei, local_data[child]);
/// else if (isnode(child))
/// recurse(getnodei(child), local_data);
/// }
/// functors.post(nodei, parent_nodei, data_for_parent, num_children, local_data);
template<typename LOCAL_DATA,typename FUNCTORS>
void traverse(
FUNCTORS &functors,
LOCAL_DATA *data_for_parent=nullptr) const noexcept;
/// This acts like the traverse function, except if the number of nodes in two subtrees
/// of a node contain at least parallel_threshold nodes, they may be executed in parallel.
/// If parallel_threshold is 0, even item_functor may be executed on items in parallel.
/// NOTE: Make sure that your functors don't depend on the order that they're executed in,
/// e.g. don't add values from sibling nodes together except in post functor,
/// else they might have nondeterministic roundoff or miss some values entirely.
template<typename LOCAL_DATA,typename FUNCTORS>
void traverseParallel(
INT_TYPE parallel_threshold,
FUNCTORS &functors,
LOCAL_DATA *data_for_parent=nullptr) const noexcept;
/// For each node, this effectively does:
/// LOCAL_DATA local_data[MAX_ORDER];
/// uint descend = functors.pre(nodei, parent_data);
/// if (!descend)
/// return;
/// for each child {
/// if (!(descend & (1<<child)))
/// continue;
/// if (isitem(child))
/// functors.item(getitemi(child), nodei, local_data[child]);
/// else if (isnode(child))
/// recurse(getnodei(child), local_data);
/// }
/// functors.post(nodei, parent_nodei, data_for_parent, num_children, local_data);
template<typename LOCAL_DATA,typename FUNCTORS>
void traverseVector(
FUNCTORS &functors,
LOCAL_DATA *data_for_parent=nullptr) const noexcept;
/// Prints a text representation of the tree to stdout.
void debugDump() const;
template<typename SRC_INT_TYPE>
static void createTrivialIndices(SRC_INT_TYPE* indices, const INT_TYPE n) noexcept;
private:
template<typename LOCAL_DATA,typename FUNCTORS>
void traverseHelper(
INT_TYPE nodei,
INT_TYPE parent_nodei,
FUNCTORS &functors,
LOCAL_DATA *data_for_parent=nullptr) const noexcept;
template<typename LOCAL_DATA,typename FUNCTORS>
void traverseParallelHelper(
INT_TYPE nodei,
INT_TYPE parent_nodei,
INT_TYPE parallel_threshold,
INT_TYPE next_node_id,
FUNCTORS &functors,
LOCAL_DATA *data_for_parent=nullptr) const noexcept;
template<typename LOCAL_DATA,typename FUNCTORS>
void traverseVectorHelper(
INT_TYPE nodei,
INT_TYPE parent_nodei,
FUNCTORS &functors,
LOCAL_DATA *data_for_parent=nullptr) const noexcept;
template<typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE>
static void computeFullBoundingBox(Box<T,NAXES>& axes_minmax, const BOX_TYPE* boxes, const INT_TYPE nboxes, SRC_INT_TYPE* indices) noexcept;
template<BVH_Heuristic H,typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE>
static void initNode(UT_Array<Node>& nodes, Node &node, const Box<T,NAXES>& axes_minmax, const BOX_TYPE* boxes, SRC_INT_TYPE* indices, const INT_TYPE nboxes) noexcept;
template<BVH_Heuristic H,typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE>
static void initNodeReorder(UT_Array<Node>& nodes, Node &node, const Box<T,NAXES>& axes_minmax, const BOX_TYPE* boxes, SRC_INT_TYPE* indices, const INT_TYPE nboxes, const INT_TYPE indices_offset, const INT_TYPE max_items_per_leaf) noexcept;
template<BVH_Heuristic H,typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE>
static void multiSplit(const Box<T,NAXES>& axes_minmax, const BOX_TYPE* boxes, SRC_INT_TYPE* indices, INT_TYPE nboxes, SRC_INT_TYPE* sub_indices[N+1], Box<T,NAXES> sub_boxes[N]) noexcept;
template<BVH_Heuristic H,typename T,uint NAXES,typename BOX_TYPE,typename SRC_INT_TYPE>
static void split(const Box<T,NAXES>& axes_minmax, const BOX_TYPE* boxes, SRC_INT_TYPE* indices, INT_TYPE nboxes, SRC_INT_TYPE*& split_indices, Box<T,NAXES>* split_boxes) noexcept;
template<INT_TYPE PARALLEL_THRESHOLD, typename SRC_INT_TYPE>
static void adjustParallelChildNodes(INT_TYPE nparallel, UT_Array<Node>& nodes, Node& node, UT_Array<Node>* parallel_nodes, SRC_INT_TYPE* sub_indices) noexcept;
template<typename T,typename BOX_TYPE,typename SRC_INT_TYPE>
static void nthElement(const BOX_TYPE* boxes, SRC_INT_TYPE* indices, const SRC_INT_TYPE* indices_end, const uint axis, SRC_INT_TYPE*const nth) noexcept;
template<typename T,typename BOX_TYPE,typename SRC_INT_TYPE>
static void partitionByCentre(const BOX_TYPE* boxes, SRC_INT_TYPE*const indices, const SRC_INT_TYPE*const indices_end, const uint axis, const T pivotx2, SRC_INT_TYPE*& ppivot_start, SRC_INT_TYPE*& ppivot_end) noexcept;
/// An overestimate of the number of nodes needed.
/// At worst, we could have only 2 children in every leaf, and
/// then above that, we have a geometric series with r=1/N and a=(sub_nboxes/2)/N
/// The true worst case might be a little worst than this, but
/// it's probably fairly unlikely.
SYS_FORCE_INLINE static INT_TYPE nodeEstimate(const INT_TYPE nboxes) noexcept {
return nboxes/2 + nboxes/(2*(N-1));
}
template<BVH_Heuristic H,typename T, uint NAXES>
SYS_FORCE_INLINE static T unweightedHeuristic(const Box<T, NAXES>& box) noexcept {
if (H == BVH_Heuristic::BOX_PERIMETER) {
return box.axis_sum();
}
if (H == BVH_Heuristic::BOX_AREA) {
return box.half_surface_area();
}
if (H == BVH_Heuristic::BOX_VOLUME) {
return box.volume();
}
if (H == BVH_Heuristic::BOX_RADIUS) {
T diameter2 = box.diameter2();
return SYSsqrt(diameter2);
}
if (H == BVH_Heuristic::BOX_RADIUS2) {
return box.diameter2();
}
if (H == BVH_Heuristic::BOX_RADIUS3) {
T diameter2 = box.diameter2();
return diameter2*SYSsqrt(diameter2);
}
UT_ASSERT_MSG(0, "BVH_Heuristic::MEDIAN_MAX_AXIS should be handled separately by caller!");
return T(1);
}
/// 16 equal-length spans (15 evenly-spaced splits) should be enough for a decent heuristic
static constexpr INT_TYPE NSPANS = 16;
static constexpr INT_TYPE NSPLITS = NSPANS-1;
/// At least 1/16 of all boxes must be on each side, else we could end up with a very deep tree
static constexpr INT_TYPE MIN_FRACTION = 16;
};
} // UT namespace
template<uint N>
using UT_BVH = UT::BVH<N>;
} // End HDK_Sample namespace
#endif
Computing file changes ...