https://github.com/torvalds/linux
Revision bb077d600689dbf9305758efed1e16775db1c84c authored by Linus Torvalds on 08 June 2014, 17:09:49 UTC, committed by Linus Torvalds on 08 June 2014, 17:09:49 UTC
This reverts commit 3e1a878b7ccdb31da6d9d2b855c72ad87afeba3f.

It came in very late, and already has one reported failure: Sitsofe
reports that the current tree fails to boot on his EeePC, and bisected
it down to this.  Rather than waste time trying to figure out what's
wrong, just revert it.

Reported-by: Sitsofe Wheeler <sitsofe@gmail.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent c593e89
Raw File
Tip revision: bb077d600689dbf9305758efed1e16775db1c84c authored by Linus Torvalds on 08 June 2014, 17:09:49 UTC
Revert "x86/smpboot: Initialize secondary CPU only if master CPU will wait for it"
Tip revision: bb077d6
lowcomms.c
/******************************************************************************
*******************************************************************************
**
**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
**
**  This copyrighted material is made available to anyone wishing to use,
**  modify, copy, or redistribute it subject to the terms and conditions
**  of the GNU General Public License v.2.
**
*******************************************************************************
******************************************************************************/

/*
 * lowcomms.c
 *
 * This is the "low-level" comms layer.
 *
 * It is responsible for sending/receiving messages
 * from other nodes in the cluster.
 *
 * Cluster nodes are referred to by their nodeids. nodeids are
 * simply 32 bit numbers to the locking module - if they need to
 * be expanded for the cluster infrastructure then that is its
 * responsibility. It is this layer's
 * responsibility to resolve these into IP address or
 * whatever it needs for inter-node communication.
 *
 * The comms level is two kernel threads that deal mainly with
 * the receiving of messages from other nodes and passing them
 * up to the mid-level comms layer (which understands the
 * message format) for execution by the locking core, and
 * a send thread which does all the setting up of connections
 * to remote nodes and the sending of data. Threads are not allowed
 * to send their own data because it may cause them to wait in times
 * of high load. Also, this way, the sending thread can collect together
 * messages bound for one node and send them in one block.
 *
 * lowcomms will choose to use either TCP or SCTP as its transport layer
 * depending on the configuration variable 'protocol'. This should be set
 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
 * cluster-wide mechanism as it must be the same on all nodes of the cluster
 * for the DLM to function.
 *
 */

#include <asm/ioctls.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/mutex.h>
#include <linux/sctp.h>
#include <linux/slab.h>
#include <net/sctp/sctp.h>
#include <net/ipv6.h>

#include "dlm_internal.h"
#include "lowcomms.h"
#include "midcomms.h"
#include "config.h"

#define NEEDED_RMEM (4*1024*1024)
#define CONN_HASH_SIZE 32

/* Number of messages to send before rescheduling */
#define MAX_SEND_MSG_COUNT 25

struct cbuf {
	unsigned int base;
	unsigned int len;
	unsigned int mask;
};

static void cbuf_add(struct cbuf *cb, int n)
{
	cb->len += n;
}

static int cbuf_data(struct cbuf *cb)
{
	return ((cb->base + cb->len) & cb->mask);
}

static void cbuf_init(struct cbuf *cb, int size)
{
	cb->base = cb->len = 0;
	cb->mask = size-1;
}

static void cbuf_eat(struct cbuf *cb, int n)
{
	cb->len  -= n;
	cb->base += n;
	cb->base &= cb->mask;
}

static bool cbuf_empty(struct cbuf *cb)
{
	return cb->len == 0;
}

struct connection {
	struct socket *sock;	/* NULL if not connected */
	uint32_t nodeid;	/* So we know who we are in the list */
	struct mutex sock_mutex;
	unsigned long flags;
#define CF_READ_PENDING 1
#define CF_WRITE_PENDING 2
#define CF_CONNECT_PENDING 3
#define CF_INIT_PENDING 4
#define CF_IS_OTHERCON 5
#define CF_CLOSE 6
#define CF_APP_LIMITED 7
	struct list_head writequeue;  /* List of outgoing writequeue_entries */
	spinlock_t writequeue_lock;
	int (*rx_action) (struct connection *);	/* What to do when active */
	void (*connect_action) (struct connection *);	/* What to do to connect */
	struct page *rx_page;
	struct cbuf cb;
	int retries;
#define MAX_CONNECT_RETRIES 3
	int sctp_assoc;
	struct hlist_node list;
	struct connection *othercon;
	struct work_struct rwork; /* Receive workqueue */
	struct work_struct swork; /* Send workqueue */
	bool try_new_addr;
};
#define sock2con(x) ((struct connection *)(x)->sk_user_data)

/* An entry waiting to be sent */
struct writequeue_entry {
	struct list_head list;
	struct page *page;
	int offset;
	int len;
	int end;
	int users;
	struct connection *con;
};

struct dlm_node_addr {
	struct list_head list;
	int nodeid;
	int addr_count;
	int curr_addr_index;
	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
};

static LIST_HEAD(dlm_node_addrs);
static DEFINE_SPINLOCK(dlm_node_addrs_spin);

static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
static int dlm_local_count;
static int dlm_allow_conn;

/* Work queues */
static struct workqueue_struct *recv_workqueue;
static struct workqueue_struct *send_workqueue;

static struct hlist_head connection_hash[CONN_HASH_SIZE];
static DEFINE_MUTEX(connections_lock);
static struct kmem_cache *con_cache;

static void process_recv_sockets(struct work_struct *work);
static void process_send_sockets(struct work_struct *work);


/* This is deliberately very simple because most clusters have simple
   sequential nodeids, so we should be able to go straight to a connection
   struct in the array */
static inline int nodeid_hash(int nodeid)
{
	return nodeid & (CONN_HASH_SIZE-1);
}

static struct connection *__find_con(int nodeid)
{
	int r;
	struct connection *con;

	r = nodeid_hash(nodeid);

	hlist_for_each_entry(con, &connection_hash[r], list) {
		if (con->nodeid == nodeid)
			return con;
	}
	return NULL;
}

/*
 * If 'allocation' is zero then we don't attempt to create a new
 * connection structure for this node.
 */
static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
{
	struct connection *con = NULL;
	int r;

	con = __find_con(nodeid);
	if (con || !alloc)
		return con;

	con = kmem_cache_zalloc(con_cache, alloc);
	if (!con)
		return NULL;

	r = nodeid_hash(nodeid);
	hlist_add_head(&con->list, &connection_hash[r]);

	con->nodeid = nodeid;
	mutex_init(&con->sock_mutex);
	INIT_LIST_HEAD(&con->writequeue);
	spin_lock_init(&con->writequeue_lock);
	INIT_WORK(&con->swork, process_send_sockets);
	INIT_WORK(&con->rwork, process_recv_sockets);

	/* Setup action pointers for child sockets */
	if (con->nodeid) {
		struct connection *zerocon = __find_con(0);

		con->connect_action = zerocon->connect_action;
		if (!con->rx_action)
			con->rx_action = zerocon->rx_action;
	}

	return con;
}

/* Loop round all connections */
static void foreach_conn(void (*conn_func)(struct connection *c))
{
	int i;
	struct hlist_node *n;
	struct connection *con;

	for (i = 0; i < CONN_HASH_SIZE; i++) {
		hlist_for_each_entry_safe(con, n, &connection_hash[i], list)
			conn_func(con);
	}
}

static struct connection *nodeid2con(int nodeid, gfp_t allocation)
{
	struct connection *con;

	mutex_lock(&connections_lock);
	con = __nodeid2con(nodeid, allocation);
	mutex_unlock(&connections_lock);

	return con;
}

/* This is a bit drastic, but only called when things go wrong */
static struct connection *assoc2con(int assoc_id)
{
	int i;
	struct connection *con;

	mutex_lock(&connections_lock);

	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
		hlist_for_each_entry(con, &connection_hash[i], list) {
			if (con->sctp_assoc == assoc_id) {
				mutex_unlock(&connections_lock);
				return con;
			}
		}
	}
	mutex_unlock(&connections_lock);
	return NULL;
}

static struct dlm_node_addr *find_node_addr(int nodeid)
{
	struct dlm_node_addr *na;

	list_for_each_entry(na, &dlm_node_addrs, list) {
		if (na->nodeid == nodeid)
			return na;
	}
	return NULL;
}

static int addr_compare(struct sockaddr_storage *x, struct sockaddr_storage *y)
{
	switch (x->ss_family) {
	case AF_INET: {
		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
		struct sockaddr_in *siny = (struct sockaddr_in *)y;
		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
			return 0;
		if (sinx->sin_port != siny->sin_port)
			return 0;
		break;
	}
	case AF_INET6: {
		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
			return 0;
		if (sinx->sin6_port != siny->sin6_port)
			return 0;
		break;
	}
	default:
		return 0;
	}
	return 1;
}

static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
			  struct sockaddr *sa_out, bool try_new_addr)
{
	struct sockaddr_storage sas;
	struct dlm_node_addr *na;

	if (!dlm_local_count)
		return -1;

	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
	if (na && na->addr_count) {
		if (try_new_addr) {
			na->curr_addr_index++;
			if (na->curr_addr_index == na->addr_count)
				na->curr_addr_index = 0;
		}

		memcpy(&sas, na->addr[na->curr_addr_index ],
			sizeof(struct sockaddr_storage));
	}
	spin_unlock(&dlm_node_addrs_spin);

	if (!na)
		return -EEXIST;

	if (!na->addr_count)
		return -ENOENT;

	if (sas_out)
		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));

	if (!sa_out)
		return 0;

	if (dlm_local_addr[0]->ss_family == AF_INET) {
		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
	} else {
		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
		ret6->sin6_addr = in6->sin6_addr;
	}

	return 0;
}

static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid)
{
	struct dlm_node_addr *na;
	int rv = -EEXIST;
	int addr_i;

	spin_lock(&dlm_node_addrs_spin);
	list_for_each_entry(na, &dlm_node_addrs, list) {
		if (!na->addr_count)
			continue;

		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
			if (addr_compare(na->addr[addr_i], addr)) {
				*nodeid = na->nodeid;
				rv = 0;
				goto unlock;
			}
		}
	}
unlock:
	spin_unlock(&dlm_node_addrs_spin);
	return rv;
}

int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
{
	struct sockaddr_storage *new_addr;
	struct dlm_node_addr *new_node, *na;

	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
	if (!new_node)
		return -ENOMEM;

	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
	if (!new_addr) {
		kfree(new_node);
		return -ENOMEM;
	}

	memcpy(new_addr, addr, len);

	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
	if (!na) {
		new_node->nodeid = nodeid;
		new_node->addr[0] = new_addr;
		new_node->addr_count = 1;
		list_add(&new_node->list, &dlm_node_addrs);
		spin_unlock(&dlm_node_addrs_spin);
		return 0;
	}

	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
		spin_unlock(&dlm_node_addrs_spin);
		kfree(new_addr);
		kfree(new_node);
		return -ENOSPC;
	}

	na->addr[na->addr_count++] = new_addr;
	spin_unlock(&dlm_node_addrs_spin);
	kfree(new_node);
	return 0;
}

/* Data available on socket or listen socket received a connect */
static void lowcomms_data_ready(struct sock *sk)
{
	struct connection *con = sock2con(sk);
	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
		queue_work(recv_workqueue, &con->rwork);
}

static void lowcomms_write_space(struct sock *sk)
{
	struct connection *con = sock2con(sk);

	if (!con)
		return;

	clear_bit(SOCK_NOSPACE, &con->sock->flags);

	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
		con->sock->sk->sk_write_pending--;
		clear_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags);
	}

	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
		queue_work(send_workqueue, &con->swork);
}

static inline void lowcomms_connect_sock(struct connection *con)
{
	if (test_bit(CF_CLOSE, &con->flags))
		return;
	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
		queue_work(send_workqueue, &con->swork);
}

static void lowcomms_state_change(struct sock *sk)
{
	if (sk->sk_state == TCP_ESTABLISHED)
		lowcomms_write_space(sk);
}

int dlm_lowcomms_connect_node(int nodeid)
{
	struct connection *con;

	/* with sctp there's no connecting without sending */
	if (dlm_config.ci_protocol != 0)
		return 0;

	if (nodeid == dlm_our_nodeid())
		return 0;

	con = nodeid2con(nodeid, GFP_NOFS);
	if (!con)
		return -ENOMEM;
	lowcomms_connect_sock(con);
	return 0;
}

/* Make a socket active */
static void add_sock(struct socket *sock, struct connection *con)
{
	con->sock = sock;

	/* Install a data_ready callback */
	con->sock->sk->sk_data_ready = lowcomms_data_ready;
	con->sock->sk->sk_write_space = lowcomms_write_space;
	con->sock->sk->sk_state_change = lowcomms_state_change;
	con->sock->sk->sk_user_data = con;
	con->sock->sk->sk_allocation = GFP_NOFS;
}

/* Add the port number to an IPv6 or 4 sockaddr and return the address
   length */
static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
			  int *addr_len)
{
	saddr->ss_family =  dlm_local_addr[0]->ss_family;
	if (saddr->ss_family == AF_INET) {
		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
		in4_addr->sin_port = cpu_to_be16(port);
		*addr_len = sizeof(struct sockaddr_in);
		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
	} else {
		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
		in6_addr->sin6_port = cpu_to_be16(port);
		*addr_len = sizeof(struct sockaddr_in6);
	}
	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
}

/* Close a remote connection and tidy up */
static void close_connection(struct connection *con, bool and_other)
{
	mutex_lock(&con->sock_mutex);

	if (con->sock) {
		sock_release(con->sock);
		con->sock = NULL;
	}
	if (con->othercon && and_other) {
		/* Will only re-enter once. */
		close_connection(con->othercon, false);
	}
	if (con->rx_page) {
		__free_page(con->rx_page);
		con->rx_page = NULL;
	}

	con->retries = 0;
	mutex_unlock(&con->sock_mutex);
}

/* We only send shutdown messages to nodes that are not part of the cluster */
static void sctp_send_shutdown(sctp_assoc_t associd)
{
	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
	struct msghdr outmessage;
	struct cmsghdr *cmsg;
	struct sctp_sndrcvinfo *sinfo;
	int ret;
	struct connection *con;

	con = nodeid2con(0,0);
	BUG_ON(con == NULL);

	outmessage.msg_name = NULL;
	outmessage.msg_namelen = 0;
	outmessage.msg_control = outcmsg;
	outmessage.msg_controllen = sizeof(outcmsg);
	outmessage.msg_flags = MSG_EOR;

	cmsg = CMSG_FIRSTHDR(&outmessage);
	cmsg->cmsg_level = IPPROTO_SCTP;
	cmsg->cmsg_type = SCTP_SNDRCV;
	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
	outmessage.msg_controllen = cmsg->cmsg_len;
	sinfo = CMSG_DATA(cmsg);
	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));

	sinfo->sinfo_flags |= MSG_EOF;
	sinfo->sinfo_assoc_id = associd;

	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);

	if (ret != 0)
		log_print("send EOF to node failed: %d", ret);
}

static void sctp_init_failed_foreach(struct connection *con)
{

	/*
	 * Don't try to recover base con and handle race where the
	 * other node's assoc init creates a assoc and we get that
	 * notification, then we get a notification that our attempt
	 * failed due. This happens when we are still trying the primary
	 * address, but the other node has already tried secondary addrs
	 * and found one that worked.
	 */
	if (!con->nodeid || con->sctp_assoc)
		return;

	log_print("Retrying SCTP association init for node %d\n", con->nodeid);

	con->try_new_addr = true;
	con->sctp_assoc = 0;
	if (test_and_clear_bit(CF_INIT_PENDING, &con->flags)) {
		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
			queue_work(send_workqueue, &con->swork);
	}
}

/* INIT failed but we don't know which node...
   restart INIT on all pending nodes */
static void sctp_init_failed(void)
{
	mutex_lock(&connections_lock);

	foreach_conn(sctp_init_failed_foreach);

	mutex_unlock(&connections_lock);
}

static void retry_failed_sctp_send(struct connection *recv_con,
				   struct sctp_send_failed *sn_send_failed,
				   char *buf)
{
	int len = sn_send_failed->ssf_length - sizeof(struct sctp_send_failed);
	struct dlm_mhandle *mh;
	struct connection *con;
	char *retry_buf;
	int nodeid = sn_send_failed->ssf_info.sinfo_ppid;

	log_print("Retry sending %d bytes to node id %d", len, nodeid);

	con = nodeid2con(nodeid, 0);
	if (!con) {
		log_print("Could not look up con for nodeid %d\n",
			  nodeid);
		return;
	}

	mh = dlm_lowcomms_get_buffer(nodeid, len, GFP_NOFS, &retry_buf);
	if (!mh) {
		log_print("Could not allocate buf for retry.");
		return;
	}
	memcpy(retry_buf, buf + sizeof(struct sctp_send_failed), len);
	dlm_lowcomms_commit_buffer(mh);

	/*
	 * If we got a assoc changed event before the send failed event then
	 * we only need to retry the send.
	 */
	if (con->sctp_assoc) {
		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
			queue_work(send_workqueue, &con->swork);
	} else
		sctp_init_failed_foreach(con);
}

/* Something happened to an association */
static void process_sctp_notification(struct connection *con,
				      struct msghdr *msg, char *buf)
{
	union sctp_notification *sn = (union sctp_notification *)buf;
	struct linger linger;

	switch (sn->sn_header.sn_type) {
	case SCTP_SEND_FAILED:
		retry_failed_sctp_send(con, &sn->sn_send_failed, buf);
		break;
	case SCTP_ASSOC_CHANGE:
		switch (sn->sn_assoc_change.sac_state) {
		case SCTP_COMM_UP:
		case SCTP_RESTART:
		{
			/* Check that the new node is in the lockspace */
			struct sctp_prim prim;
			int nodeid;
			int prim_len, ret;
			int addr_len;
			struct connection *new_con;

			/*
			 * We get this before any data for an association.
			 * We verify that the node is in the cluster and
			 * then peel off a socket for it.
			 */
			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
				log_print("COMM_UP for invalid assoc ID %d",
					 (int)sn->sn_assoc_change.sac_assoc_id);
				sctp_init_failed();
				return;
			}
			memset(&prim, 0, sizeof(struct sctp_prim));
			prim_len = sizeof(struct sctp_prim);
			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;

			ret = kernel_getsockopt(con->sock,
						IPPROTO_SCTP,
						SCTP_PRIMARY_ADDR,
						(char*)&prim,
						&prim_len);
			if (ret < 0) {
				log_print("getsockopt/sctp_primary_addr on "
					  "new assoc %d failed : %d",
					  (int)sn->sn_assoc_change.sac_assoc_id,
					  ret);

				/* Retry INIT later */
				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
				if (new_con)
					clear_bit(CF_CONNECT_PENDING, &con->flags);
				return;
			}
			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
			if (addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
				unsigned char *b=(unsigned char *)&prim.ssp_addr;
				log_print("reject connect from unknown addr");
				print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
						     b, sizeof(struct sockaddr_storage));
				sctp_send_shutdown(prim.ssp_assoc_id);
				return;
			}

			new_con = nodeid2con(nodeid, GFP_NOFS);
			if (!new_con)
				return;

			/* Peel off a new sock */
			lock_sock(con->sock->sk);
			ret = sctp_do_peeloff(con->sock->sk,
				sn->sn_assoc_change.sac_assoc_id,
				&new_con->sock);
			release_sock(con->sock->sk);
			if (ret < 0) {
				log_print("Can't peel off a socket for "
					  "connection %d to node %d: err=%d",
					  (int)sn->sn_assoc_change.sac_assoc_id,
					  nodeid, ret);
				return;
			}
			add_sock(new_con->sock, new_con);

			linger.l_onoff = 1;
			linger.l_linger = 0;
			ret = kernel_setsockopt(new_con->sock, SOL_SOCKET, SO_LINGER,
						(char *)&linger, sizeof(linger));
			if (ret < 0)
				log_print("set socket option SO_LINGER failed");

			log_print("connecting to %d sctp association %d",
				 nodeid, (int)sn->sn_assoc_change.sac_assoc_id);

			new_con->sctp_assoc = sn->sn_assoc_change.sac_assoc_id;
			new_con->try_new_addr = false;
			/* Send any pending writes */
			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
			clear_bit(CF_INIT_PENDING, &new_con->flags);
			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
				queue_work(send_workqueue, &new_con->swork);
			}
			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
				queue_work(recv_workqueue, &new_con->rwork);
		}
		break;

		case SCTP_COMM_LOST:
		case SCTP_SHUTDOWN_COMP:
		{
			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
			if (con) {
				con->sctp_assoc = 0;
			}
		}
		break;

		case SCTP_CANT_STR_ASSOC:
		{
			/* Will retry init when we get the send failed notification */
			log_print("Can't start SCTP association - retrying");
		}
		break;

		default:
			log_print("unexpected SCTP assoc change id=%d state=%d",
				  (int)sn->sn_assoc_change.sac_assoc_id,
				  sn->sn_assoc_change.sac_state);
		}
	default:
		; /* fall through */
	}
}

/* Data received from remote end */
static int receive_from_sock(struct connection *con)
{
	int ret = 0;
	struct msghdr msg = {};
	struct kvec iov[2];
	unsigned len;
	int r;
	int call_again_soon = 0;
	int nvec;
	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];

	mutex_lock(&con->sock_mutex);

	if (con->sock == NULL) {
		ret = -EAGAIN;
		goto out_close;
	}

	if (con->rx_page == NULL) {
		/*
		 * This doesn't need to be atomic, but I think it should
		 * improve performance if it is.
		 */
		con->rx_page = alloc_page(GFP_ATOMIC);
		if (con->rx_page == NULL)
			goto out_resched;
		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
	}

	/* Only SCTP needs these really */
	memset(&incmsg, 0, sizeof(incmsg));
	msg.msg_control = incmsg;
	msg.msg_controllen = sizeof(incmsg);

	/*
	 * iov[0] is the bit of the circular buffer between the current end
	 * point (cb.base + cb.len) and the end of the buffer.
	 */
	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
	iov[1].iov_len = 0;
	nvec = 1;

	/*
	 * iov[1] is the bit of the circular buffer between the start of the
	 * buffer and the start of the currently used section (cb.base)
	 */
	if (cbuf_data(&con->cb) >= con->cb.base) {
		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
		iov[1].iov_len = con->cb.base;
		iov[1].iov_base = page_address(con->rx_page);
		nvec = 2;
	}
	len = iov[0].iov_len + iov[1].iov_len;

	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
			       MSG_DONTWAIT | MSG_NOSIGNAL);
	if (ret <= 0)
		goto out_close;

	/* Process SCTP notifications */
	if (msg.msg_flags & MSG_NOTIFICATION) {
		msg.msg_control = incmsg;
		msg.msg_controllen = sizeof(incmsg);

		process_sctp_notification(con, &msg,
				page_address(con->rx_page) + con->cb.base);
		mutex_unlock(&con->sock_mutex);
		return 0;
	}
	BUG_ON(con->nodeid == 0);

	if (ret == len)
		call_again_soon = 1;
	cbuf_add(&con->cb, ret);
	ret = dlm_process_incoming_buffer(con->nodeid,
					  page_address(con->rx_page),
					  con->cb.base, con->cb.len,
					  PAGE_CACHE_SIZE);
	if (ret == -EBADMSG) {
		log_print("lowcomms: addr=%p, base=%u, len=%u, "
			  "iov_len=%u, iov_base[0]=%p, read=%d",
			  page_address(con->rx_page), con->cb.base, con->cb.len,
			  len, iov[0].iov_base, r);
	}
	if (ret < 0)
		goto out_close;
	cbuf_eat(&con->cb, ret);

	if (cbuf_empty(&con->cb) && !call_again_soon) {
		__free_page(con->rx_page);
		con->rx_page = NULL;
	}

	if (call_again_soon)
		goto out_resched;
	mutex_unlock(&con->sock_mutex);
	return 0;

out_resched:
	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
		queue_work(recv_workqueue, &con->rwork);
	mutex_unlock(&con->sock_mutex);
	return -EAGAIN;

out_close:
	mutex_unlock(&con->sock_mutex);
	if (ret != -EAGAIN) {
		close_connection(con, false);
		/* Reconnect when there is something to send */
	}
	/* Don't return success if we really got EOF */
	if (ret == 0)
		ret = -EAGAIN;

	return ret;
}

/* Listening socket is busy, accept a connection */
static int tcp_accept_from_sock(struct connection *con)
{
	int result;
	struct sockaddr_storage peeraddr;
	struct socket *newsock;
	int len;
	int nodeid;
	struct connection *newcon;
	struct connection *addcon;

	mutex_lock(&connections_lock);
	if (!dlm_allow_conn) {
		mutex_unlock(&connections_lock);
		return -1;
	}
	mutex_unlock(&connections_lock);

	memset(&peeraddr, 0, sizeof(peeraddr));
	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
				  IPPROTO_TCP, &newsock);
	if (result < 0)
		return -ENOMEM;

	mutex_lock_nested(&con->sock_mutex, 0);

	result = -ENOTCONN;
	if (con->sock == NULL)
		goto accept_err;

	newsock->type = con->sock->type;
	newsock->ops = con->sock->ops;

	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
	if (result < 0)
		goto accept_err;

	/* Get the connected socket's peer */
	memset(&peeraddr, 0, sizeof(peeraddr));
	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
				  &len, 2)) {
		result = -ECONNABORTED;
		goto accept_err;
	}

	/* Get the new node's NODEID */
	make_sockaddr(&peeraddr, 0, &len);
	if (addr_to_nodeid(&peeraddr, &nodeid)) {
		unsigned char *b=(unsigned char *)&peeraddr;
		log_print("connect from non cluster node");
		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
				     b, sizeof(struct sockaddr_storage));
		sock_release(newsock);
		mutex_unlock(&con->sock_mutex);
		return -1;
	}

	log_print("got connection from %d", nodeid);

	/*  Check to see if we already have a connection to this node. This
	 *  could happen if the two nodes initiate a connection at roughly
	 *  the same time and the connections cross on the wire.
	 *  In this case we store the incoming one in "othercon"
	 */
	newcon = nodeid2con(nodeid, GFP_NOFS);
	if (!newcon) {
		result = -ENOMEM;
		goto accept_err;
	}
	mutex_lock_nested(&newcon->sock_mutex, 1);
	if (newcon->sock) {
		struct connection *othercon = newcon->othercon;

		if (!othercon) {
			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
			if (!othercon) {
				log_print("failed to allocate incoming socket");
				mutex_unlock(&newcon->sock_mutex);
				result = -ENOMEM;
				goto accept_err;
			}
			othercon->nodeid = nodeid;
			othercon->rx_action = receive_from_sock;
			mutex_init(&othercon->sock_mutex);
			INIT_WORK(&othercon->swork, process_send_sockets);
			INIT_WORK(&othercon->rwork, process_recv_sockets);
			set_bit(CF_IS_OTHERCON, &othercon->flags);
		}
		if (!othercon->sock) {
			newcon->othercon = othercon;
			othercon->sock = newsock;
			newsock->sk->sk_user_data = othercon;
			add_sock(newsock, othercon);
			addcon = othercon;
		}
		else {
			printk("Extra connection from node %d attempted\n", nodeid);
			result = -EAGAIN;
			mutex_unlock(&newcon->sock_mutex);
			goto accept_err;
		}
	}
	else {
		newsock->sk->sk_user_data = newcon;
		newcon->rx_action = receive_from_sock;
		add_sock(newsock, newcon);
		addcon = newcon;
	}

	mutex_unlock(&newcon->sock_mutex);

	/*
	 * Add it to the active queue in case we got data
	 * between processing the accept adding the socket
	 * to the read_sockets list
	 */
	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
		queue_work(recv_workqueue, &addcon->rwork);
	mutex_unlock(&con->sock_mutex);

	return 0;

accept_err:
	mutex_unlock(&con->sock_mutex);
	sock_release(newsock);

	if (result != -EAGAIN)
		log_print("error accepting connection from node: %d", result);
	return result;
}

static void free_entry(struct writequeue_entry *e)
{
	__free_page(e->page);
	kfree(e);
}

/*
 * writequeue_entry_complete - try to delete and free write queue entry
 * @e: write queue entry to try to delete
 * @completed: bytes completed
 *
 * writequeue_lock must be held.
 */
static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
{
	e->offset += completed;
	e->len -= completed;

	if (e->len == 0 && e->users == 0) {
		list_del(&e->list);
		free_entry(e);
	}
}

/* Initiate an SCTP association.
   This is a special case of send_to_sock() in that we don't yet have a
   peeled-off socket for this association, so we use the listening socket
   and add the primary IP address of the remote node.
 */
static void sctp_init_assoc(struct connection *con)
{
	struct sockaddr_storage rem_addr;
	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
	struct msghdr outmessage;
	struct cmsghdr *cmsg;
	struct sctp_sndrcvinfo *sinfo;
	struct connection *base_con;
	struct writequeue_entry *e;
	int len, offset;
	int ret;
	int addrlen;
	struct kvec iov[1];

	mutex_lock(&con->sock_mutex);
	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
		goto unlock;

	if (nodeid_to_addr(con->nodeid, NULL, (struct sockaddr *)&rem_addr,
			   con->try_new_addr)) {
		log_print("no address for nodeid %d", con->nodeid);
		goto unlock;
	}
	base_con = nodeid2con(0, 0);
	BUG_ON(base_con == NULL);

	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);

	outmessage.msg_name = &rem_addr;
	outmessage.msg_namelen = addrlen;
	outmessage.msg_control = outcmsg;
	outmessage.msg_controllen = sizeof(outcmsg);
	outmessage.msg_flags = MSG_EOR;

	spin_lock(&con->writequeue_lock);

	if (list_empty(&con->writequeue)) {
		spin_unlock(&con->writequeue_lock);
		log_print("writequeue empty for nodeid %d", con->nodeid);
		goto unlock;
	}

	e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
	len = e->len;
	offset = e->offset;

	/* Send the first block off the write queue */
	iov[0].iov_base = page_address(e->page)+offset;
	iov[0].iov_len = len;
	spin_unlock(&con->writequeue_lock);

	if (rem_addr.ss_family == AF_INET) {
		struct sockaddr_in *sin = (struct sockaddr_in *)&rem_addr;
		log_print("Trying to connect to %pI4", &sin->sin_addr.s_addr);
	} else {
		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&rem_addr;
		log_print("Trying to connect to %pI6", &sin6->sin6_addr);
	}

	cmsg = CMSG_FIRSTHDR(&outmessage);
	cmsg->cmsg_level = IPPROTO_SCTP;
	cmsg->cmsg_type = SCTP_SNDRCV;
	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
	sinfo = CMSG_DATA(cmsg);
	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
	sinfo->sinfo_ppid = cpu_to_le32(con->nodeid);
	outmessage.msg_controllen = cmsg->cmsg_len;
	sinfo->sinfo_flags |= SCTP_ADDR_OVER;

	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
	if (ret < 0) {
		log_print("Send first packet to node %d failed: %d",
			  con->nodeid, ret);

		/* Try again later */
		clear_bit(CF_CONNECT_PENDING, &con->flags);
		clear_bit(CF_INIT_PENDING, &con->flags);
	}
	else {
		spin_lock(&con->writequeue_lock);
		writequeue_entry_complete(e, ret);
		spin_unlock(&con->writequeue_lock);
	}

unlock:
	mutex_unlock(&con->sock_mutex);
}

/* Connect a new socket to its peer */
static void tcp_connect_to_sock(struct connection *con)
{
	struct sockaddr_storage saddr, src_addr;
	int addr_len;
	struct socket *sock = NULL;
	int one = 1;
	int result;

	if (con->nodeid == 0) {
		log_print("attempt to connect sock 0 foiled");
		return;
	}

	mutex_lock(&con->sock_mutex);
	if (con->retries++ > MAX_CONNECT_RETRIES)
		goto out;

	/* Some odd races can cause double-connects, ignore them */
	if (con->sock)
		goto out;

	/* Create a socket to communicate with */
	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
				  IPPROTO_TCP, &sock);
	if (result < 0)
		goto out_err;

	memset(&saddr, 0, sizeof(saddr));
	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false);
	if (result < 0) {
		log_print("no address for nodeid %d", con->nodeid);
		goto out_err;
	}

	sock->sk->sk_user_data = con;
	con->rx_action = receive_from_sock;
	con->connect_action = tcp_connect_to_sock;
	add_sock(sock, con);

	/* Bind to our cluster-known address connecting to avoid
	   routing problems */
	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
	make_sockaddr(&src_addr, 0, &addr_len);
	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
				 addr_len);
	if (result < 0) {
		log_print("could not bind for connect: %d", result);
		/* This *may* not indicate a critical error */
	}

	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);

	log_print("connecting to %d", con->nodeid);

	/* Turn off Nagle's algorithm */
	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
			  sizeof(one));

	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
				   O_NONBLOCK);
	if (result == -EINPROGRESS)
		result = 0;
	if (result == 0)
		goto out;

out_err:
	if (con->sock) {
		sock_release(con->sock);
		con->sock = NULL;
	} else if (sock) {
		sock_release(sock);
	}
	/*
	 * Some errors are fatal and this list might need adjusting. For other
	 * errors we try again until the max number of retries is reached.
	 */
	if (result != -EHOSTUNREACH &&
	    result != -ENETUNREACH &&
	    result != -ENETDOWN && 
	    result != -EINVAL &&
	    result != -EPROTONOSUPPORT) {
		log_print("connect %d try %d error %d", con->nodeid,
			  con->retries, result);
		mutex_unlock(&con->sock_mutex);
		msleep(1000);
		lowcomms_connect_sock(con);
		return;
	}
out:
	mutex_unlock(&con->sock_mutex);
	return;
}

static struct socket *tcp_create_listen_sock(struct connection *con,
					     struct sockaddr_storage *saddr)
{
	struct socket *sock = NULL;
	int result = 0;
	int one = 1;
	int addr_len;

	if (dlm_local_addr[0]->ss_family == AF_INET)
		addr_len = sizeof(struct sockaddr_in);
	else
		addr_len = sizeof(struct sockaddr_in6);

	/* Create a socket to communicate with */
	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
				  IPPROTO_TCP, &sock);
	if (result < 0) {
		log_print("Can't create listening comms socket");
		goto create_out;
	}

	/* Turn off Nagle's algorithm */
	kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY, (char *)&one,
			  sizeof(one));

	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
				   (char *)&one, sizeof(one));

	if (result < 0) {
		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
	}
	con->rx_action = tcp_accept_from_sock;
	con->connect_action = tcp_connect_to_sock;

	/* Bind to our port */
	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
	if (result < 0) {
		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
		sock_release(sock);
		sock = NULL;
		con->sock = NULL;
		goto create_out;
	}
	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
				 (char *)&one, sizeof(one));
	if (result < 0) {
		log_print("Set keepalive failed: %d", result);
	}

	result = sock->ops->listen(sock, 5);
	if (result < 0) {
		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
		sock_release(sock);
		sock = NULL;
		goto create_out;
	}

create_out:
	return sock;
}

/* Get local addresses */
static void init_local(void)
{
	struct sockaddr_storage sas, *addr;
	int i;

	dlm_local_count = 0;
	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
		if (dlm_our_addr(&sas, i))
			break;

		addr = kmalloc(sizeof(*addr), GFP_NOFS);
		if (!addr)
			break;
		memcpy(addr, &sas, sizeof(*addr));
		dlm_local_addr[dlm_local_count++] = addr;
	}
}

/* Bind to an IP address. SCTP allows multiple address so it can do
   multi-homing */
static int add_sctp_bind_addr(struct connection *sctp_con,
			      struct sockaddr_storage *addr,
			      int addr_len, int num)
{
	int result = 0;

	if (num == 1)
		result = kernel_bind(sctp_con->sock,
				     (struct sockaddr *) addr,
				     addr_len);
	else
		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
					   SCTP_SOCKOPT_BINDX_ADD,
					   (char *)addr, addr_len);

	if (result < 0)
		log_print("Can't bind to port %d addr number %d",
			  dlm_config.ci_tcp_port, num);

	return result;
}

/* Initialise SCTP socket and bind to all interfaces */
static int sctp_listen_for_all(void)
{
	struct socket *sock = NULL;
	struct sockaddr_storage localaddr;
	struct sctp_event_subscribe subscribe;
	int result = -EINVAL, num = 1, i, addr_len;
	struct connection *con = nodeid2con(0, GFP_NOFS);
	int bufsize = NEEDED_RMEM;
	int one = 1;

	if (!con)
		return -ENOMEM;

	log_print("Using SCTP for communications");

	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
				  IPPROTO_SCTP, &sock);
	if (result < 0) {
		log_print("Can't create comms socket, check SCTP is loaded");
		goto out;
	}

	/* Listen for events */
	memset(&subscribe, 0, sizeof(subscribe));
	subscribe.sctp_data_io_event = 1;
	subscribe.sctp_association_event = 1;
	subscribe.sctp_send_failure_event = 1;
	subscribe.sctp_shutdown_event = 1;
	subscribe.sctp_partial_delivery_event = 1;

	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
				 (char *)&bufsize, sizeof(bufsize));
	if (result)
		log_print("Error increasing buffer space on socket %d", result);

	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
				   (char *)&subscribe, sizeof(subscribe));
	if (result < 0) {
		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
			  result);
		goto create_delsock;
	}

	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_NODELAY, (char *)&one,
				   sizeof(one));
	if (result < 0)
		log_print("Could not set SCTP NODELAY error %d\n", result);

	/* Init con struct */
	sock->sk->sk_user_data = con;
	con->sock = sock;
	con->sock->sk->sk_data_ready = lowcomms_data_ready;
	con->rx_action = receive_from_sock;
	con->connect_action = sctp_init_assoc;

	/* Bind to all interfaces. */
	for (i = 0; i < dlm_local_count; i++) {
		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);

		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
		if (result)
			goto create_delsock;
		++num;
	}

	result = sock->ops->listen(sock, 5);
	if (result < 0) {
		log_print("Can't set socket listening");
		goto create_delsock;
	}

	return 0;

create_delsock:
	sock_release(sock);
	con->sock = NULL;
out:
	return result;
}

static int tcp_listen_for_all(void)
{
	struct socket *sock = NULL;
	struct connection *con = nodeid2con(0, GFP_NOFS);
	int result = -EINVAL;

	if (!con)
		return -ENOMEM;

	/* We don't support multi-homed hosts */
	if (dlm_local_addr[1] != NULL) {
		log_print("TCP protocol can't handle multi-homed hosts, "
			  "try SCTP");
		return -EINVAL;
	}

	log_print("Using TCP for communications");

	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
	if (sock) {
		add_sock(sock, con);
		result = 0;
	}
	else {
		result = -EADDRINUSE;
	}

	return result;
}



static struct writequeue_entry *new_writequeue_entry(struct connection *con,
						     gfp_t allocation)
{
	struct writequeue_entry *entry;

	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
	if (!entry)
		return NULL;

	entry->page = alloc_page(allocation);
	if (!entry->page) {
		kfree(entry);
		return NULL;
	}

	entry->offset = 0;
	entry->len = 0;
	entry->end = 0;
	entry->users = 0;
	entry->con = con;

	return entry;
}

void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
{
	struct connection *con;
	struct writequeue_entry *e;
	int offset = 0;

	con = nodeid2con(nodeid, allocation);
	if (!con)
		return NULL;

	spin_lock(&con->writequeue_lock);
	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
	if ((&e->list == &con->writequeue) ||
	    (PAGE_CACHE_SIZE - e->end < len)) {
		e = NULL;
	} else {
		offset = e->end;
		e->end += len;
		e->users++;
	}
	spin_unlock(&con->writequeue_lock);

	if (e) {
	got_one:
		*ppc = page_address(e->page) + offset;
		return e;
	}

	e = new_writequeue_entry(con, allocation);
	if (e) {
		spin_lock(&con->writequeue_lock);
		offset = e->end;
		e->end += len;
		e->users++;
		list_add_tail(&e->list, &con->writequeue);
		spin_unlock(&con->writequeue_lock);
		goto got_one;
	}
	return NULL;
}

void dlm_lowcomms_commit_buffer(void *mh)
{
	struct writequeue_entry *e = (struct writequeue_entry *)mh;
	struct connection *con = e->con;
	int users;

	spin_lock(&con->writequeue_lock);
	users = --e->users;
	if (users)
		goto out;
	e->len = e->end - e->offset;
	spin_unlock(&con->writequeue_lock);

	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
		queue_work(send_workqueue, &con->swork);
	}
	return;

out:
	spin_unlock(&con->writequeue_lock);
	return;
}

/* Send a message */
static void send_to_sock(struct connection *con)
{
	int ret = 0;
	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
	struct writequeue_entry *e;
	int len, offset;
	int count = 0;

	mutex_lock(&con->sock_mutex);
	if (con->sock == NULL)
		goto out_connect;

	spin_lock(&con->writequeue_lock);
	for (;;) {
		e = list_entry(con->writequeue.next, struct writequeue_entry,
			       list);
		if ((struct list_head *) e == &con->writequeue)
			break;

		len = e->len;
		offset = e->offset;
		BUG_ON(len == 0 && e->users == 0);
		spin_unlock(&con->writequeue_lock);

		ret = 0;
		if (len) {
			ret = kernel_sendpage(con->sock, e->page, offset, len,
					      msg_flags);
			if (ret == -EAGAIN || ret == 0) {
				if (ret == -EAGAIN &&
				    test_bit(SOCK_ASYNC_NOSPACE, &con->sock->flags) &&
				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
					/* Notify TCP that we're limited by the
					 * application window size.
					 */
					set_bit(SOCK_NOSPACE, &con->sock->flags);
					con->sock->sk->sk_write_pending++;
				}
				cond_resched();
				goto out;
			} else if (ret < 0)
				goto send_error;
		}

		/* Don't starve people filling buffers */
		if (++count >= MAX_SEND_MSG_COUNT) {
			cond_resched();
			count = 0;
		}

		spin_lock(&con->writequeue_lock);
		writequeue_entry_complete(e, ret);
	}
	spin_unlock(&con->writequeue_lock);
out:
	mutex_unlock(&con->sock_mutex);
	return;

send_error:
	mutex_unlock(&con->sock_mutex);
	close_connection(con, false);
	lowcomms_connect_sock(con);
	return;

out_connect:
	mutex_unlock(&con->sock_mutex);
	if (!test_bit(CF_INIT_PENDING, &con->flags))
		lowcomms_connect_sock(con);
}

static void clean_one_writequeue(struct connection *con)
{
	struct writequeue_entry *e, *safe;

	spin_lock(&con->writequeue_lock);
	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
		list_del(&e->list);
		free_entry(e);
	}
	spin_unlock(&con->writequeue_lock);
}

/* Called from recovery when it knows that a node has
   left the cluster */
int dlm_lowcomms_close(int nodeid)
{
	struct connection *con;
	struct dlm_node_addr *na;

	log_print("closing connection to node %d", nodeid);
	con = nodeid2con(nodeid, 0);
	if (con) {
		clear_bit(CF_CONNECT_PENDING, &con->flags);
		clear_bit(CF_WRITE_PENDING, &con->flags);
		set_bit(CF_CLOSE, &con->flags);
		if (cancel_work_sync(&con->swork))
			log_print("canceled swork for node %d", nodeid);
		if (cancel_work_sync(&con->rwork))
			log_print("canceled rwork for node %d", nodeid);
		clean_one_writequeue(con);
		close_connection(con, true);
	}

	spin_lock(&dlm_node_addrs_spin);
	na = find_node_addr(nodeid);
	if (na) {
		list_del(&na->list);
		while (na->addr_count--)
			kfree(na->addr[na->addr_count]);
		kfree(na);
	}
	spin_unlock(&dlm_node_addrs_spin);

	return 0;
}

/* Receive workqueue function */
static void process_recv_sockets(struct work_struct *work)
{
	struct connection *con = container_of(work, struct connection, rwork);
	int err;

	clear_bit(CF_READ_PENDING, &con->flags);
	do {
		err = con->rx_action(con);
	} while (!err);
}

/* Send workqueue function */
static void process_send_sockets(struct work_struct *work)
{
	struct connection *con = container_of(work, struct connection, swork);

	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
		con->connect_action(con);
		set_bit(CF_WRITE_PENDING, &con->flags);
	}
	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
		send_to_sock(con);
}


/* Discard all entries on the write queues */
static void clean_writequeues(void)
{
	foreach_conn(clean_one_writequeue);
}

static void work_stop(void)
{
	destroy_workqueue(recv_workqueue);
	destroy_workqueue(send_workqueue);
}

static int work_start(void)
{
	recv_workqueue = alloc_workqueue("dlm_recv",
					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
	if (!recv_workqueue) {
		log_print("can't start dlm_recv");
		return -ENOMEM;
	}

	send_workqueue = alloc_workqueue("dlm_send",
					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
	if (!send_workqueue) {
		log_print("can't start dlm_send");
		destroy_workqueue(recv_workqueue);
		return -ENOMEM;
	}

	return 0;
}

static void stop_conn(struct connection *con)
{
	con->flags |= 0x0F;
	if (con->sock && con->sock->sk)
		con->sock->sk->sk_user_data = NULL;
}

static void free_conn(struct connection *con)
{
	close_connection(con, true);
	if (con->othercon)
		kmem_cache_free(con_cache, con->othercon);
	hlist_del(&con->list);
	kmem_cache_free(con_cache, con);
}

void dlm_lowcomms_stop(void)
{
	/* Set all the flags to prevent any
	   socket activity.
	*/
	mutex_lock(&connections_lock);
	dlm_allow_conn = 0;
	foreach_conn(stop_conn);
	mutex_unlock(&connections_lock);

	work_stop();

	mutex_lock(&connections_lock);
	clean_writequeues();

	foreach_conn(free_conn);

	mutex_unlock(&connections_lock);
	kmem_cache_destroy(con_cache);
}

int dlm_lowcomms_start(void)
{
	int error = -EINVAL;
	struct connection *con;
	int i;

	for (i = 0; i < CONN_HASH_SIZE; i++)
		INIT_HLIST_HEAD(&connection_hash[i]);

	init_local();
	if (!dlm_local_count) {
		error = -ENOTCONN;
		log_print("no local IP address has been set");
		goto fail;
	}

	error = -ENOMEM;
	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
				      __alignof__(struct connection), 0,
				      NULL);
	if (!con_cache)
		goto fail;

	error = work_start();
	if (error)
		goto fail_destroy;

	dlm_allow_conn = 1;

	/* Start listening */
	if (dlm_config.ci_protocol == 0)
		error = tcp_listen_for_all();
	else
		error = sctp_listen_for_all();
	if (error)
		goto fail_unlisten;

	return 0;

fail_unlisten:
	dlm_allow_conn = 0;
	con = nodeid2con(0,0);
	if (con) {
		close_connection(con, false);
		kmem_cache_free(con_cache, con);
	}
fail_destroy:
	kmem_cache_destroy(con_cache);
fail:
	return error;
}

void dlm_lowcomms_exit(void)
{
	struct dlm_node_addr *na, *safe;

	spin_lock(&dlm_node_addrs_spin);
	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
		list_del(&na->list);
		while (na->addr_count--)
			kfree(na->addr[na->addr_count]);
		kfree(na);
	}
	spin_unlock(&dlm_node_addrs_spin);
}
back to top