https://github.com/GPflow/GPflow
Revision bb08f22e337d1487b8d9ab9944d8b9f7fff853ff authored by Vincent Dutordoir on 18 June 2018, 17:04:06 UTC, committed by Artem Artemev on 18 June 2018, 17:04:06 UTC
* Introduction of MultiOutputFeatures (Mof) and MultiOutputKernels (Mok).
These are used to specify a particular setup of multi-output correlation.

* Multiple-dispatch for conditional. This allows GPflow to select the most efficient conditional code depending on your choice of Mof and Mok.

* Multiple-dispatch for Kuu and Kuf. Previously Kuu(.) and Kuf(.) were member functions of the feature class. This became cumbersome as the calculation of Kuu and Kuf also depends on the kernel used. In line with conditional we now also use multiple-dispatch to calculate Kuu and Kuf for a particular combination of Mok and Mof.

* The actual maths to efficiently calculate the output-correlated conditional (credits to @markvdw )

* sample_conditional function that makes sure that the most efficient code is used to get a sample from the conditional distribution.

* Minor: we updated a couple of models to use the new multi-output conditional.
1 parent 6baeb43
Raw File
Tip revision: bb08f22e337d1487b8d9ab9944d8b9f7fff853ff authored by Vincent Dutordoir on 18 June 2018, 17:04:06 UTC
Multi-output conditionals (#724)
Tip revision: bb08f22
test_method_equivalence.py
# Copyright 2016 the GPflow authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf



import numpy as np
from numpy.testing import assert_allclose

import gpflow
from gpflow.test_util import GPflowTestCase


class TestEquivalence(GPflowTestCase):
    """
    With a Gaussian likelihood, and inducing points (where appropriate)
    positioned at the data, many of the gpflow methods are equivalent (perhaps
    subject to some optimization).

    Here, we make 5 models that should be the same, and make sure some
    similarites hold. The models are:

    1) GP Regression
    2) Variational GP (with the likelihood set to Gaussian)
    3) Sparse variational GP (likelihood is Gaussian, inducing points
       at the data)
    4) Sparse variational GP (as above, but with the whitening rotation
       of the inducing variables)
    5) Sparse variational GP Regression (as above, but there the inducing
       variables are 'collapsed' out, as in Titsias 2009)
    """

    def prepare(self):
        rng = np.random.RandomState(0)
        X = rng.rand(20, 1) * 10
        Y = np.sin(X) + 0.9 * np.cos(X * 1.6) + rng.randn(*X.shape) * 0.8
        Y = np.tile(Y, 2)  # two identical columns
        self.Xtest = rng.rand(10, 1) * 10

        m1 = gpflow.models.GPR(
            X, Y, kern=gpflow.kernels.RBF(1),
            mean_function=gpflow.mean_functions.Constant())
        m2 = gpflow.models.VGP(
            X, Y, gpflow.kernels.RBF(1), likelihood=gpflow.likelihoods.Gaussian(),
            mean_function=gpflow.mean_functions.Constant())
        m3 = gpflow.models.SVGP(
            X, Y, gpflow.kernels.RBF(1),
            likelihood=gpflow.likelihoods.Gaussian(),
            Z=X.copy(),
            q_diag=False,
            mean_function=gpflow.mean_functions.Constant())
        m3.feature.trainable = False
        m4 = gpflow.models.SVGP(
            X, Y, gpflow.kernels.RBF(1),
            likelihood=gpflow.likelihoods.Gaussian(),
            Z=X.copy(), q_diag=False, whiten=True,
            mean_function=gpflow.mean_functions.Constant())
        m4.feature.trainable = False
        m5 = gpflow.models.SGPR(
            X, Y, gpflow.kernels.RBF(1),
            Z=X.copy(),
            mean_function=gpflow.mean_functions.Constant())

        m5.feature.trainable = False
        m6 = gpflow.models.GPRFITC(
            X, Y, gpflow.kernels.RBF(1), Z=X.copy(),
            mean_function=gpflow.mean_functions.Constant())
        m6.feature.trainable = False
        return [m1, m2, m3, m4, m5, m6]

    def test_all(self):
        with self.test_context() as session:
            models = self.prepare()
            likelihoods = []
            for m in models:
                opt = gpflow.train.ScipyOptimizer()
                opt.minimize(m, maxiter=300)
                neg_obj = tf.negative(m.objective)
                likelihoods.append(session.run(neg_obj).squeeze())
            assert_allclose(likelihoods, likelihoods[0], rtol=1e-6)
            variances, lengthscales = [], []
            for m in models:
                if hasattr(m.kern, 'rbf'):
                    variances.append(m.kern.rbf.variance.read_value())
                    lengthscales.append(m.kern.rbf.lengthscales.read_value())
                else:
                    variances.append(m.kern.variance.read_value())
                    lengthscales.append(m.kern.lengthscales.read_value())
            variances, lengthscales = np.array(variances), np.array(lengthscales)
            assert_allclose(variances, variances[0], 1e-5)
            assert_allclose(lengthscales, lengthscales.mean(), 1e-4)
            mu0, var0 = models[0].predict_y(self.Xtest)
            for i, m in enumerate(models[1:]):
                mu, var = m.predict_y(self.Xtest)
                assert_allclose(mu, mu0, 1e-3)
                assert_allclose(var, var0, 1e-4)


class VGPTest(GPflowTestCase):
    def test_vgp_vs_svgp(self):
        with self.test_context():
            N, Ns, DX, DY = 100, 10, 2, 2
            np.random.seed(1)
            X = np.random.randn(N, DX)
            Xs = np.random.randn(Ns, DX)
            Y = np.random.randn(N, DY)

            kern = gpflow.kernels.Matern52(DX)
            likelihood = gpflow.likelihoods.StudentT()

            m_svgp = gpflow.models.SVGP(
                X, Y, kern, likelihood, X.copy(), whiten=True, q_diag=False)
            m_vgp = gpflow.models.VGP(X, Y, kern, likelihood)

            m_svgp.compile()
            m_vgp.compile()

            q_mu = np.random.randn(N, DY)
            q_sqrt = np.random.randn(DY, N, N)

            m_svgp.q_mu = q_mu
            m_svgp.q_sqrt = q_sqrt

            m_vgp.q_mu = q_mu
            m_vgp.q_sqrt = q_sqrt

            L_svgp = m_svgp.compute_log_likelihood()
            L_vgp = m_vgp.compute_log_likelihood()
            assert_allclose(L_svgp, L_vgp, rtol=1e-2)

            pred_svgp = m_svgp.predict_f(Xs)
            pred_vgp = m_vgp.predict_f(Xs)
            assert_allclose(pred_svgp[0], pred_vgp[0])
            assert_allclose(pred_svgp[1], pred_vgp[1])

    def test_vgp_vs_opper_archambeau(self):
        with self.test_context():
            N, Ns, DX, DY = 100, 10, 2, 2

            np.random.seed(1)
            X = np.random.randn(N, DX)
            Xs = np.random.randn(Ns, DX)
            Y = np.random.randn(N, DY)

            kern = gpflow.kernels.Matern52(DX)
            likelihood = gpflow.likelihoods.StudentT()

            m_vgp = gpflow.models.VGP(X, Y, kern, likelihood)
            m_vgp_oa = gpflow.models.VGP_opper_archambeau(X, Y, kern, likelihood)
            m_vgp.compile()
            m_vgp_oa.compile()

            q_alpha = np.random.randn(N, DX)
            q_lambda = np.random.randn(N, DX) ** 2

            m_vgp_oa.q_alpha = q_alpha
            m_vgp_oa.q_lambda = q_lambda

            K = kern.compute_K_symm(X) + np.eye(N) * gpflow.settings.jitter
            L = np.linalg.cholesky(K)
            L_inv = np.linalg.inv(L)
            K_inv = np.linalg.inv(K)

            mean = K.dot(q_alpha)
            prec_dnn = K_inv[None, :, :] + np.array([np.diag(l ** 2) for l in q_lambda.T])
            var_dnn = np.linalg.inv(prec_dnn)

            m_svgp_unwhitened = gpflow.models.SVGP(
                X, Y, kern, likelihood, X.copy(),
                whiten=False, q_diag=False)

            m_svgp_unwhitened.q_mu = mean
            m_svgp_unwhitened.q_sqrt = np.linalg.cholesky(var_dnn)

            m_svgp_unwhitened.compile()

            mean_white_nd = L_inv.dot(mean)
            var_white_dnn = np.einsum('nN,dNM,mM->dnm', L_inv, var_dnn, L_inv)

            q_sqrt_nnd = np.linalg.cholesky(var_white_dnn)

            m_vgp.q_mu = mean_white_nd
            m_vgp.q_sqrt = q_sqrt_nnd

            L_vgp = m_vgp.compute_log_likelihood()
            L_svgp_unwhitened = m_svgp_unwhitened.compute_log_likelihood()
            L_vgp_oa = m_vgp_oa.compute_log_likelihood()
            assert_allclose(L_vgp, L_vgp_oa, rtol=1e-2)
            assert_allclose(L_vgp, L_svgp_unwhitened, rtol=1e-2)

            pred_vgp = m_vgp.predict_f(Xs)
            pred_svgp_unwhitened = m_svgp_unwhitened.predict_f(Xs)
            pred_vgp_oa = m_vgp_oa.predict_f(Xs)

            assert_allclose(pred_vgp[0], pred_vgp_oa[0])
            assert_allclose(pred_vgp[0], pred_svgp_unwhitened[0])
            assert_allclose(pred_vgp[1], pred_vgp_oa[1], rtol=1e-4)  # jitter?
            assert_allclose(pred_vgp[1], pred_svgp_unwhitened[1], rtol=1e-4)

    #def test_recompile(self):
    #    with self.test_context():
    #        N, DX, DY = 100, 2, 2
    #        np.random.seed(1)
    #        X = np.random.randn(N, DX)
    #        Y = np.random.randn(N, DY)
    #        kern = gpflow.kernels.Matern52(DX)
    #        likelihood = gpflow.likelihoods.StudentT()
    #        m_vgp = gpflow.models.VGP(X, Y, kern, likelihood)
    #        m_vgp_oa = gpflow.models.VGP_opper_archambeau(X, Y, kern, likelihood)
    #        for m in [m_vgp, m_vgp_oa]:
    #            m.compile()
    #            opt = gpflow.train.ScipyOptimizer()
    #            opt.minimize(m, maxiter=1)
    #            m.X = X[:-1, :]
    #            m.Y = Y[:-1, :]
    #            opt.minimize(m, maxiter=1)


class TestUpperBound(GPflowTestCase):
    """
    Test for upper bound for regression marginal likelihood
    """

    def setUp(self):
        self.X = np.random.rand(100, 1)
        self.Y = np.sin(1.5 * 2 * np.pi * self.X) + np.random.randn(*self.X.shape) * 0.1

    def test_few_inducing_points(self):
        with self.test_context() as session:
            vfe = gpflow.models.SGPR(self.X, self.Y, gpflow.kernels.RBF(1), self.X[:10, :].copy())
            opt = gpflow.train.ScipyOptimizer()
            opt.minimize(vfe)

            full = gpflow.models.GPR(self.X, self.Y, gpflow.kernels.RBF(1))
            full.kern.lengthscales = vfe.kern.lengthscales.read_value()
            full.kern.variance = vfe.kern.variance.read_value()
            full.likelihood.variance = vfe.likelihood.variance.read_value()

            lml_upper = vfe.compute_upper_bound()
            lml_vfe = - session.run(vfe.objective)
            lml_full = - session.run(full.objective)

            self.assertTrue(lml_upper > lml_full > lml_vfe)


if __name__ == '__main__':
    tf.test.main()
back to top