https://github.com/GPflow/GPflow
Revision bb08f22e337d1487b8d9ab9944d8b9f7fff853ff authored by Vincent Dutordoir on 18 June 2018, 17:04:06 UTC, committed by Artem Artemev on 18 June 2018, 17:04:06 UTC
* Introduction of MultiOutputFeatures (Mof) and MultiOutputKernels (Mok).
These are used to specify a particular setup of multi-output correlation.

* Multiple-dispatch for conditional. This allows GPflow to select the most efficient conditional code depending on your choice of Mof and Mok.

* Multiple-dispatch for Kuu and Kuf. Previously Kuu(.) and Kuf(.) were member functions of the feature class. This became cumbersome as the calculation of Kuu and Kuf also depends on the kernel used. In line with conditional we now also use multiple-dispatch to calculate Kuu and Kuf for a particular combination of Mok and Mof.

* The actual maths to efficiently calculate the output-correlated conditional (credits to @markvdw )

* sample_conditional function that makes sure that the most efficient code is used to get a sample from the conditional distribution.

* Minor: we updated a couple of models to use the new multi-output conditional.
1 parent 6baeb43
Raw File
Tip revision: bb08f22e337d1487b8d9ab9944d8b9f7fff853ff authored by Vincent Dutordoir on 18 June 2018, 17:04:06 UTC
Multi-output conditionals (#724)
Tip revision: bb08f22
test_variational.py
# Copyright 2016 the GPflow authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf

import numpy as np
from numpy.testing import assert_allclose

import gpflow
from gpflow.test_util import GPflowTestCase

from .reference import referenceRbfKernel


def univariate_log_marginal_likelihood(y, K, noiseVariance):
    return (-0.5 * y * y / (K + noiseVariance)
            -0.5 * np.log(K + noiseVariance)
            -0.5 * np.log(np.pi * 2.))


def univariate_posterior(y, K, noiseVariance):
    mean = K * y / (K + noiseVariance)
    variance = K - K / (K + noiseVariance)
    return mean, variance


def univariate_prior_KL(meanA, meanB, varA, varB):
    # KL[ qA | qB ] = E_{qA} \log [qA / qB] where qA and qB are univariate normal distributions.
    return (0.5 * (np.log(varB) - np.log(varA) - 1. + varA/varB +
                   (meanB-meanA) * (meanB - meanA) / varB))


def multivariate_prior_KL(meanA, covA, meanB, covB):
    # KL[ qA | qB ] = E_{qA} \log [qA / qB] where qA and aB are
    # K dimensional multivariate normal distributions.
    # Analytically tractable and equal to...
    # 0.5 * (Tr(covB^{-1} covA) + (meanB - meanA)^T covB^{-1} (meanB - meanA)
    #        - K + log(det(covB)) - log (det(covA)))
    K = covA.shape[0]
    traceTerm = 0.5 * np.trace(np.linalg.solve(covB, covA))
    delta = meanB - meanA
    mahalanobisTerm = 0.5 * np.dot(delta.T, np.linalg.solve(covB, delta))
    constantTerm = -0.5 * K
    priorLogDeterminantTerm = 0.5*np.linalg.slogdet(covB)[1]
    variationalLogDeterminantTerm = -0.5 * np.linalg.slogdet(covA)[1]
    return (traceTerm +
            mahalanobisTerm +
            constantTerm +
            priorLogDeterminantTerm +
            variationalLogDeterminantTerm)


def kernel(kernelVariance=1, lengthScale=1.):
    kern = gpflow.kernels.RBF(1)
    kern.variance = kernelVariance
    kern.lengthscales = lengthScale
    return kern


class VariationalUnivariateTest(GPflowTestCase):

    y_real = 2.
    K = 1.
    noiseVariance = 0.5
    univariate = 1
    oneLatentFunction = 1
    meanZero = 0.
    X = np.atleast_2d(np.array([0.]))
    Y = np.atleast_2d(np.array([y_real]))
    Z = X.copy()
    posteriorMean, posteriorVariance = univariate_posterior(
        y=y_real, K=K, noiseVariance=noiseVariance)
    posteriorStd = np.sqrt(posteriorVariance)

    def likelihood(self):
        return gpflow.likelihoods.Gaussian(var=self.noiseVariance)

    def get_model(self, is_diagonal, is_whitened):
        m = gpflow.models.SVGP(
            X=self.X, Y=self.Y,
            kern=kernel(kernelVariance=self.K),
            likelihood=self.likelihood(),
            Z=self.Z,
            q_diag=is_diagonal,
            whiten=is_whitened,
            autobuild=False)

        if is_diagonal:
            ones = np.ones((self.univariate, self.univariate, self.oneLatentFunction))
            m.q_sqrt = ones * self.posteriorStd
        else:
            ones = np.ones((self.univariate, self.univariate, self.oneLatentFunction))
            m.q_sqrt = ones * self.posteriorStd

        m.q_mu = np.ones((self.univariate, self.oneLatentFunction)) * self.posteriorMean
        m.compile()
        return m

    def test_prior_KL(self):
        with self.test_context():
            meanA = self.posteriorMean
            varA = self.posteriorVariance
            meanB = self.meanZero  # Assumes a zero
            varB = self.K

            referenceKL = univariate_prior_KL(meanA, meanB, varA, varB)

            for is_diagonal in [True, False]:
                for is_whitened in [True, False]:
                    m = self.get_model(is_diagonal, is_whitened)

                    test_prior_KL = gpflow.autoflow()(m.build_prior_KL.__func__)(m)
                    assert_allclose(referenceKL - test_prior_KL, 0, atol=4)

    def test_build_likelihood(self):
        with self.test_context():
            # reference marginal likelihood
            log_marginal_likelihood = univariate_log_marginal_likelihood(
                y=self.y_real, K=self.K, noiseVariance=self.noiseVariance)

            for is_diagonal in [True, False]:
                for is_whitened in [True, False]:
                    model = self.get_model(is_diagonal, is_whitened)
                    model_likelihood = model.compute_log_likelihood()
                    assert_allclose(model_likelihood - log_marginal_likelihood, 0, atol=4)

    def testUnivariateConditionals(self):
        with self.test_context() as sess:
            for is_diagonal in [True, False]:
                for is_whitened in [True, False]:
                    m = self.get_model(is_diagonal, is_whitened)
                    with gpflow.params_as_tensors_for(m):
                        if is_whitened:
                            fmean_func, fvar_func = gpflow.conditionals.conditional(
                                self.X, self.Z, m.kern, m.q_mu, q_sqrt=m.q_sqrt)
                        else:
                            fmean_func, fvar_func = gpflow.conditionals.conditional(
                                self.X, self.Z, m.kern, m.q_mu, q_sqrt=m.q_sqrt, white=True)
                    mean_value = fmean_func.eval(session=sess)[0, 0]
                    var_value = fvar_func.eval(session=sess)[0, 0]
                    assert_allclose(mean_value - self.posteriorMean, 0, atol=4)
                    assert_allclose(var_value - self.posteriorVariance, 0, atol=4)


class VariationalMultivariateTest(GPflowTestCase):

    nDimensions = 3
    rng = np.random.RandomState(1)
    rng = rng
    Y = rng.randn(nDimensions, 1)
    X = rng.randn(nDimensions, 1)
    Z = X.copy()
    noiseVariance = 0.5
    signalVariance = 1.5
    lengthScale = 1.7
    oneLatentFunction = 1
    q_mean = rng.randn(nDimensions, oneLatentFunction)
    q_sqrt_diag = rng.rand(nDimensions, oneLatentFunction)
    q_sqrt_full = np.tril(rng.rand(nDimensions, nDimensions))

    def likelihood(self):
        return gpflow.likelihoods.Gaussian(self.noiseVariance)

    def get_model(self, is_diagonal, is_whitened):
        m = gpflow.models.SVGP(
            X=self.X, Y=self.Y,
            kern=kernel(kernelVariance=self.signalVariance, lengthScale=self.lengthScale),
            likelihood=self.likelihood(),
            Z=self.Z,
            q_diag=is_diagonal,
            whiten=is_whitened)
        if is_diagonal:
            m.q_sqrt = self.q_sqrt_diag
        else:
            m.q_sqrt = self.q_sqrt_full[None, :, :]
        m.q_mu = self.q_mean
        return m

    def test_refrence_implementation_consistency(self):
        with self.test_context():
            rng = np.random.RandomState(10)
            qMean = rng.randn()
            qCov = rng.rand()
            pMean = rng.rand()
            pCov = rng.rand()
            univariate_KL = univariate_prior_KL(qMean, pMean, qCov, pCov)
            multivariate_KL = multivariate_prior_KL(
                np.array([[qMean]]), np.array([[qCov]]),
                np.array([[pMean]]), np.array([[pCov]]))
            assert_allclose(univariate_KL - multivariate_KL, 0, atol=4)

    def test_prior_KL_fullQ(self):
        with self.test_context():
            covQ = np.dot(self.q_sqrt_full, self.q_sqrt_full.T)
            mean_prior = np.zeros((self.nDimensions, 1))
            for is_whitened in [True, False]:
                m = self.get_model(False, is_whitened)
                if is_whitened:
                    cov_prior = np.eye(self.nDimensions)
                else:
                    cov_prior = referenceRbfKernel(
                        self.X, self.lengthScale, self.signalVariance)
                referenceKL = multivariate_prior_KL(
                    self.q_mean, covQ, mean_prior, cov_prior)
                # now get test KL.
                test_prior_KL = gpflow.autoflow()(m.build_prior_KL.__func__)(m)
                assert_allclose(referenceKL - test_prior_KL, 0, atol=4)

if __name__ == "__main__":
    tf.test.main()
back to top