https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Checkpoints.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */

#include <sys/file.h>
#include "element_definitions.h"
#include "global_defs.h"

/* Private function prototypes */
static void backup_file(const char *output_file);
static void write_sentinel(FILE *fp);
static void read_sentinel(FILE *fp, int me);
static void general_checkpoint(struct All_variables *E, FILE *fp);

static void general_checkpoint(struct All_variables *E, FILE *fp);
static void tracer_checkpoint(struct All_variables *E, FILE *fp);
static void composition_checkpoint(struct All_variables *E, FILE *fp);
static void energy_checkpoint(struct All_variables *E, FILE *fp);
static void momentum_checkpoint(struct All_variables *E, FILE *fp);

static void read_general_checkpoint(struct All_variables *E, FILE *fp);
static void read_tracer_checkpoint(struct All_variables *E, FILE *fp);
static void read_composition_checkpoint(struct All_variables *E, FILE *fp);
static void read_energy_checkpoint(struct All_variables *E, FILE *fp);
static void read_momentum_checkpoint(struct All_variables *E, FILE *fp);


void output_checkpoint(struct All_variables *E)
{
    char output_file[255];
    FILE *fp1;

    sprintf(output_file, "%s.chkpt.%d.%d", E->control.data_file,
            E->parallel.me, E->monitor.solution_cycles);

    /* Disable the backup since the filename is unique. */
    /* backup_file(output_file); */

    fp1 = fopen(output_file, "wb");

    /* checkpoint for general information */
    /* this must be the first to be checkpointed */
    general_checkpoint(E, fp1);

    /* checkpoint for tracer/composition */
    if(E->control.tracer) {
        tracer_checkpoint(E, fp1);

        if(E->composition.on)
            composition_checkpoint(E, fp1);
    }

    /* checkpoint for energy equation */
    energy_checkpoint(E, fp1);

    /* checkpoint for momentum equation */
    momentum_checkpoint(E, fp1);

    fclose(fp1);
    return;
}


void read_checkpoint(struct All_variables *E)
{
    void initialize_material(struct All_variables *E);

    char output_file[255];
    FILE *fp;

    /* open the checkpoint file */
    snprintf(output_file, 254, "%s.chkpt.%d.%d", E->control.old_P_file,
             E->parallel.me, E->monitor.solution_cycles_init);
    fp = fopen(output_file, "rb");
    if(fp == NULL) {
        fprintf(stderr, "Cannot open file: %s\n", output_file);
        exit(-1);
    }

    /* check mesh information in the checkpoint file */
    read_general_checkpoint(E, fp);

    /* init E->mat */
    initialize_material(E);

    /* read tracer/composition information in the checkpoint file */
    if(E->control.tracer) {
        read_tracer_checkpoint(E, fp);

        if(E->composition.on)
            read_composition_checkpoint(E, fp);
    }

    /* read energy information in the checkpoint file */
    read_energy_checkpoint(E, fp);

    /* read momentum information in the checkpoint file */
    read_momentum_checkpoint(E, fp);

    fclose(fp);
    return;
}


static void backup_file(const char *output_file)
{
    char bak_file[255];
    int ierr;

    /* check the existence of output_file */
    if(access(output_file, F_OK) == 0) {
        /* if exist, renamed it to back up */
        sprintf(bak_file, "%s.bak", output_file);
        ierr = rename(output_file, bak_file);
        if(ierr != 0) {
            fprintf(stderr, "Warning, cannot backup checkpoint files\n");
        }
    }

    return;
}


static void write_sentinel(FILE *fp)
{
    int a[4] = {0, 0, 0, 0};

    fwrite(a, sizeof(int), 4, fp);
}


static void read_sentinel(FILE *fp, int me)
{
    int i, a[4];
    char nonzero = 0;

    fread(a, sizeof(int), 4, fp);

    /* check whether a[i] are all zero */
    for(i=0; i<4; i++)
        nonzero |= a[i];

    if(nonzero) {
        fprintf(stderr, "Error in reading checkpoint file: wrong sentinel, "
                "me=%d\n", me);
        exit(-1);
    }

    return;
}


static void general_checkpoint(struct All_variables *E, FILE *fp)
{
    /* write mesh information */
    fwrite(&(E->lmesh.nox), sizeof(int), 1, fp);
    fwrite(&(E->lmesh.noy), sizeof(int), 1, fp);
    fwrite(&(E->lmesh.noz), sizeof(int), 1, fp);
    fwrite(&(E->parallel.nprocx), sizeof(int), 1, fp);
    fwrite(&(E->parallel.nprocy), sizeof(int), 1, fp);
    fwrite(&(E->parallel.nprocz), sizeof(int), 1, fp);
    fwrite(&(E->sphere.caps_per_proc), sizeof(int), 1, fp);

    /* write timing information */
    fwrite(&(E->monitor.solution_cycles), sizeof(int), 1, fp);
    fwrite(&(E->monitor.elapsed_time), sizeof(float), 1, fp);
    fwrite(&(E->advection.timestep), sizeof(float), 1, fp);
    fwrite(&(E->control.start_age), sizeof(float), 1, fp);

    return;
}


static void read_general_checkpoint(struct All_variables *E, FILE *fp)
{
    int tmp[7];
    double dtmp;

    /* read mesh information */
    fread(tmp, sizeof(int), 7, fp);

    if((tmp[0] != E->lmesh.nox) ||
       (tmp[1] != E->lmesh.noy) ||
       (tmp[2] != E->lmesh.noz) ||
       (tmp[3] != E->parallel.nprocx) ||
       (tmp[4] != E->parallel.nprocy) ||
       (tmp[5] != E->parallel.nprocz) ||
       (tmp[6] != E->sphere.caps_per_proc)) {

        fprintf(stderr, "Error in reading checkpoint file: mesh, me=%d\n",
                E->parallel.me);
        fprintf(stderr, "%d %d %d %d %d %d %d\n",
                tmp[0], tmp[1], tmp[2], tmp[3],
                tmp[4], tmp[5], tmp[6]);
        exit(-1);
    }

    /* read timing information */
    fread(&(E->monitor.solution_cycles), sizeof(int), 1, fp);
    fread(&(E->monitor.elapsed_time), sizeof(float), 1, fp);
    fread(&(E->advection.timestep), sizeof(float), 1, fp);
    fread(&(E->control.start_age), sizeof(float), 1, fp);

    E->advection.timesteps = E->monitor.solution_cycles;

    return;
}


static void tracer_checkpoint(struct All_variables *E, FILE *fp)
{
    int m, i;

    write_sentinel(fp);

    fwrite(&(E->trace.number_of_basic_quantities), sizeof(int), 1, fp);
    fwrite(&(E->trace.number_of_extra_quantities), sizeof(int), 1, fp);
    fwrite(&(E->trace.nflavors), sizeof(int), 1, fp);
    fwrite(&(E->trace.ilast_tracer_count), sizeof(int), 1, fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++)
        fwrite(&(E->trace.ntracers[m]), sizeof(int), 1, fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(i=0; i<E->trace.number_of_basic_quantities; i++) {
            fwrite(E->trace.basicq[m][i], sizeof(double),
                   E->trace.ntracers[m]+1, fp);
        }
        for(i=0; i<E->trace.number_of_extra_quantities; i++) {
            fwrite(E->trace.extraq[m][i], sizeof(double),
                   E->trace.ntracers[m]+1, fp);
        }
        fwrite(E->trace.ielement[m], sizeof(int),
               E->trace.ntracers[m]+1, fp);
        for(i=0; i<E->trace.nflavors; i++) {
            fwrite(E->trace.ntracer_flavor[m][i], sizeof(double),
                   E->lmesh.nel+1, fp);
        }
    }

    return;
}


static void read_tracer_checkpoint(struct All_variables *E, FILE *fp)
{
    void allocate_tracer_arrays();

    int m, i, itmp;

    read_sentinel(fp, E->parallel.me);

    fread(&itmp, sizeof(int), 1, fp);
    if (itmp != E->trace.number_of_basic_quantities) {
        fprintf(stderr, "Error in reading checkpoint file: tracer basicq, me=%d\n",
                E->parallel.me);
        fprintf(stderr, "%d\n", itmp);
        exit(-1);

    }

    fread(&itmp, sizeof(int), 1, fp);
    if (itmp != E->trace.number_of_extra_quantities) {
        fprintf(stderr, "Error in reading checkpoint file: tracer extraq, me=%d\n",
                E->parallel.me);
        fprintf(stderr, "%d\n", itmp);
        exit(-1);

    }

    fread(&itmp, sizeof(int), 1, fp);
    if (itmp != E->trace.nflavors) {
        fprintf(stderr, "Error in reading checkpoint file: tracer nflavors, me=%d\n",
                E->parallel.me);
        fprintf(stderr, "%d\n", itmp);
        exit(-1);

    }

    fread(&itmp, sizeof(int), 1, fp);
    E->trace.ilast_tracer_count = itmp;

    /* # of tracers, allocate memory */
    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        fread(&itmp, sizeof(int), 1, fp);
        allocate_tracer_arrays(E, m, itmp);
        E->trace.ntracers[m] = itmp;
    }

    /* read tracer data */
    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(i=0; i<E->trace.number_of_basic_quantities; i++) {
            fread(E->trace.basicq[m][i], sizeof(double),
                  E->trace.ntracers[m]+1, fp);
        }
        for(i=0; i<E->trace.number_of_extra_quantities; i++) {
            fread(E->trace.extraq[m][i], sizeof(double),
                  E->trace.ntracers[m]+1, fp);
        }
        fread(E->trace.ielement[m], sizeof(int),
              E->trace.ntracers[m]+1, fp);
        for(i=0; i<E->trace.nflavors; i++) {
            fread(E->trace.ntracer_flavor[m][i], sizeof(double),
                  E->lmesh.nel+1, fp);
        }
    }

    return;
}


static void composition_checkpoint(struct All_variables *E, FILE *fp)
{
    int i, m;

    write_sentinel(fp);

    fwrite(&(E->composition.ncomp), sizeof(int), 1, fp);
    fwrite(E->composition.bulk_composition, sizeof(double),
           E->composition.ncomp, fp);
    fwrite(E->composition.initial_bulk_composition, sizeof(double),
           E->composition.ncomp, fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(i=0; i<E->composition.ncomp; i++)
            fwrite(E->composition.comp_el[m][i], sizeof(double),
                   E->lmesh.nel+1, fp);
    }
    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(i=0; i<E->composition.ncomp; i++)
            fwrite(E->composition.comp_node[m][i], sizeof(double),
                   E->lmesh.nno+1, fp);
    }

    return;
}


static void read_composition_checkpoint(struct All_variables *E, FILE *fp)
{
    double tmp;
    int m, i, itmp;

    read_sentinel(fp, E->parallel.me);

    fread(&itmp, sizeof(int), 1, fp);
    if (itmp != E->composition.ncomp) {
        fprintf(stderr, "Error in reading checkpoint file: ncomp, me=%d\n",
                E->parallel.me);
        fprintf(stderr, "%d\n", itmp);
        exit(-1);
    }

    fread(E->composition.bulk_composition, sizeof(double),
          E->composition.ncomp, fp);

    fread(E->composition.initial_bulk_composition, sizeof(double),
          E->composition.ncomp, fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(i=0; i<E->composition.ncomp; i++)
            fread(E->composition.comp_el[m][i], sizeof(double),
                  E->lmesh.nel+1, fp);
    }

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        for(i=0; i<E->composition.ncomp; i++)
            fread(E->composition.comp_node[m][i], sizeof(double),
                  E->lmesh.nno+1, fp);
    }

    /* preventing uninitialized access */
    E->trace.istat_iempty = 0;

    for (i=0; i<E->composition.ncomp; i++) {
        E->composition.error_fraction[i] = E->composition.bulk_composition[i]
        / E->composition.initial_bulk_composition[i] - 1.0;
    }

    return;
}


static void energy_checkpoint(struct All_variables *E, FILE *fp)
{
    int m;

    write_sentinel(fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        fwrite(E->T[m], sizeof(double), E->lmesh.nno+1, fp);
        fwrite(E->Tdot[m], sizeof(double), E->lmesh.nno+1, fp);
    }

    return;
}


static void read_energy_checkpoint(struct All_variables *E, FILE *fp)
{
    int m;

    read_sentinel(fp, E->parallel.me);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        fread(E->T[m], sizeof(double), E->lmesh.nno+1, fp);
        fread(E->Tdot[m], sizeof(double), E->lmesh.nno+1, fp);
    }

    return;
}


static void momentum_checkpoint(struct All_variables *E, FILE *fp)
{
    int m, i;
    int lev = E->mesh.levmax;

    write_sentinel(fp);

    fwrite(&(E->monitor.vdotv), sizeof(float), 1, fp);
    fwrite(&(E->monitor.incompressibility), sizeof(float), 1, fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        /* Pressure at equation points and nodes */
        /* Writing E->NP instead of calling p_to_nodes() because p_to_nodes()
         * contains parallel communication */
        fwrite(E->P[m], sizeof(double), E->lmesh.npno+1, fp);
        fwrite(E->NP[m], sizeof(float), E->lmesh.nno+1, fp);

        /* velocity at equation points */
        fwrite(E->U[m], sizeof(double), E->lmesh.neq+2, fp);

        /* viscosity at quadrature points and node points */
        fwrite(E->EVI[lev][m], sizeof(float),
               (E->lmesh.nel+2)*vpoints[E->mesh.nsd], fp);
        fwrite(E->VI[lev][m], sizeof(float), E->lmesh.nno+2, fp);
    }

    return;
}


static void read_momentum_checkpoint(struct All_variables *E, FILE *fp)
{
    void v_from_vector();

    int m, i;
    int lev = E->mesh.levmax;

    read_sentinel(fp, E->parallel.me);

    fread(&(E->monitor.vdotv), sizeof(float), 1, fp);
    fread(&(E->monitor.incompressibility), sizeof(float), 1, fp);

    for(m=1; m<=E->sphere.caps_per_proc; m++) {
        /* Pressure at equation points and nodes */
        fread(E->P[m], sizeof(double), E->lmesh.npno+1, fp);
        fread(E->NP[m], sizeof(float), E->lmesh.nno+1, fp);

        /* velocity at equation points */
        fread(E->U[m], sizeof(double), E->lmesh.neq+2, fp);

        /* viscosity at quadrature points and node points */
        fread(E->EVI[lev][m], sizeof(float),
              (E->lmesh.nel+2)*vpoints[E->mesh.nsd], fp);
        fread(E->VI[lev][m], sizeof(float), E->lmesh.nno+2, fp);
    }

    /* update velocity array */
    v_from_vector(E);

    return;
}



back to top