https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Full_version_dependent.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include <math.h>

#include "global_defs.h"
#include "parallel_related.h"

/* Setup global mesh parameters */
void full_global_derived_values(E)
  struct All_variables *E;
{
  int d,i,nox,noz,noy;

  E->mesh.levmax = E->mesh.levels-1;
  nox = E->mesh.mgunitx * (int) pow(2.0,((double)E->mesh.levmax))*E->parallel.nprocx + 1;
  noy = E->mesh.mgunity * (int) pow(2.0,((double)E->mesh.levmax))*E->parallel.nprocy + 1;
  noz = E->mesh.mgunitz * (int) pow(2.0,((double)E->mesh.levmax))*E->parallel.nprocz + 1;

  if (E->control.NMULTIGRID||E->control.EMULTIGRID)  {
    E->mesh.levmax = E->mesh.levels-1;
    E->mesh.gridmax = E->mesh.levmax;
    E->mesh.nox = E->mesh.mgunitx * (int) pow(2.0,((double)E->mesh.levmax))*E->parallel.nprocx + 1;
    E->mesh.noy = E->mesh.mgunity * (int) pow(2.0,((double)E->mesh.levmax))*E->parallel.nprocy + 1;
    E->mesh.noz = E->mesh.mgunitz * (int) pow(2.0,((double)E->mesh.levmax))*E->parallel.nprocz + 1;
  }
  else   {
    if (nox!=E->mesh.nox || noy!=E->mesh.noy || noz!=E->mesh.noz) {
      if (E->parallel.me==0)
	fprintf(stderr,"inconsistent mesh for interpolation, quit the run\n");
      parallel_process_termination();
    }
    E->mesh.gridmax = E->mesh.levmax;
    E->mesh.gridmin = E->mesh.levmax;
  }

  if(E->mesh.nsd != 3)
    E->mesh.noy = 1;

  E->mesh.elx = E->mesh.nox-1;
  E->mesh.ely = E->mesh.noy-1;
  E->mesh.elz = E->mesh.noz-1;

  E->mesh.nno = E->sphere.caps*E->mesh.nox*E->mesh.noy*E->mesh.noz;

  E->mesh.nel = E->sphere.caps*E->mesh.elx*E->mesh.elz*E->mesh.ely;

  E->mesh.nnov = E->mesh.nno;

  E->mesh.neq = E->mesh.nnov*E->mesh.nsd;

  E->mesh.npno = E->mesh.nel;
  E->mesh.nsf = E->mesh.nox*E->mesh.noy;

  for(i=E->mesh.levmax;i>=E->mesh.levmin;i--) {
    if (E->control.NMULTIGRID||E->control.EMULTIGRID) {
      nox = E->mesh.mgunitx * (int) pow(2.0,(double)i)*E->parallel.nprocx + 1;
      noy = E->mesh.mgunity * (int) pow(2.0,(double)i)*E->parallel.nprocy + 1;
      noz = E->mesh.mgunitz * (int) pow(2.0,(double)i)*E->parallel.nprocz + 1;
    }
    else {
      noz = E->mesh.noz;
      nox = E->mesh.nox;
      noy = E->mesh.noy;
      /*if (i<E->mesh.levmax) noz=2;*/
    }

    E->mesh.ELX[i] = nox-1;
    E->mesh.ELY[i] = noy-1;
    E->mesh.ELZ[i] = noz-1;
    E->mesh.NNO[i] = E->sphere.caps * nox * noz * noy;
    E->mesh.NEL[i] = E->sphere.caps * (nox-1) * (noz-1) * (noy-1);
    E->mesh.NPNO[i] = E->mesh.NEL[i] ;
    E->mesh.NOX[i] = nox;
    E->mesh.NOZ[i] = noz;
    E->mesh.NOY[i] = noy;

    E->mesh.NNOV[i] = E->mesh.NNO[i];
    E->mesh.NEQ[i] = E->mesh.nsd * E->mesh.NNOV[i] ;
    /*      fprintf(stderr,"level=%d nox=%d noy=%d noz=%d %d %d %d %d %d %d %d %d %d %d %d\n",i,nox,noy,noz,E->mesh.ELX[i],E->mesh.ELY[i],E->mesh.ELZ[i],E->mesh.NNO[i],E->mesh.NEL[i],E->mesh.NPNO[i],E->mesh.NOX[i],E->mesh.NOZ[i],E->mesh.NOY[i],E->mesh.NNOV[i],E->mesh.NEQ[i]); */
    /*      MPI_Barrier(E->parallel.world); */
  }



  /* Myr */
  E->data.scalet = (E->data.radius_km*1e3*E->data.radius_km*1e3/E->data.therm_diff)/(1.e6*365.25*24*3600);
  /* cm/yr */
  E->data.scalev = (E->data.radius_km*1e3/E->data.therm_diff)/(100*365.25*24*3600);
  E->data.timedir = E->control.Atemp / fabs(E->control.Atemp);

  if(E->control.print_convergence && E->parallel.me==0)
    fprintf(stderr,"Problem has %d x %d x %d nodes\n",E->mesh.nox,E->mesh.noz,E->mesh.noy);

  return;
}


/* =================================================
   Standard node positions including mesh refinement

   =================================================  */

void full_node_locations(E)
     struct All_variables *E;
{
  int i,j,k,ii,lev;
  double ro,dr,*rr,*RR,fo;
  float tt1;
  int step,nn;
  char output_file[255], a[255];
  FILE *fp1;

  void full_coord_of_cap();
  void rotate_mesh ();
  void compute_angle_surf_area ();

  rr = (double *)  malloc((E->mesh.noz+1)*sizeof(double));
  RR = (double *)  malloc((E->mesh.noz+1)*sizeof(double));

  if(E->control.coor==1)    {
      sprintf(output_file,"%s",E->control.coor_file);
      fp1=fopen(output_file,"r");
	if (fp1 == NULL) {
          fprintf(E->fp,"(Nodal_mesh.c #1) Cannot open %s\n",output_file);
          exit(8);
	}
      fscanf(fp1,"%s %d",a,&i);
      for (k=1;k<=E->mesh.noz;k++)  {
	fscanf(fp1,"%d %f",&nn,&tt1);
	rr[k]=tt1;
      }

      fclose(fp1);
  }
  else {
    /* generate uniform mesh in radial direction */
    dr = (E->sphere.ro-E->sphere.ri)/(E->mesh.noz-1);

    for (k=1;k<=E->mesh.noz;k++)  {
      rr[k] = E->sphere.ri + (k-1)*dr;
    }
  }

  for (i=1;i<=E->lmesh.noz;i++)  {
      k = E->lmesh.nzs+i-1;
      RR[i] = rr[k];
      }

  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++) {

    if (E->control.NMULTIGRID||E->control.EMULTIGRID)
        step = (int) pow(2.0,(double)(E->mesh.levmax-lev));
    else
        step = 1;

      for (i=1;i<=E->lmesh.NOZ[lev];i++)
         E->sphere.R[lev][i] = RR[(i-1)*step+1];

    }          /* lev   */

  free ((void *) rr);
  free ((void *) RR);

  ro = -0.5*(M_PI/4.0)/E->mesh.elx;
  fo = 0.0;

  E->sphere.dircos[1][1] = cos(ro)*cos(fo);
  E->sphere.dircos[1][2] = cos(ro)*sin(fo);
  E->sphere.dircos[1][3] = -sin(ro);
  E->sphere.dircos[2][1] = -sin(fo);
  E->sphere.dircos[2][2] = cos(fo);
  E->sphere.dircos[2][3] = 0.0;
  E->sphere.dircos[3][1] = sin(ro)*cos(fo);
  E->sphere.dircos[3][2] = sin(ro)*sin(fo);
  E->sphere.dircos[3][3] = cos(ro);

  for (j=1;j<=E->sphere.caps_per_proc;j++)   {
     ii = E->sphere.capid[j];
     full_coord_of_cap(E,j,ii);
     }

  /* rotate the mesh to avoid two poles on mesh points */
  for (j=1;j<=E->sphere.caps_per_proc;j++)   {
     ii = E->sphere.capid[j];
     rotate_mesh(E,j,ii);
     }

  compute_angle_surf_area (E);   /* used for interpolation */

  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++)
    for (j=1;j<=E->sphere.caps_per_proc;j++)
      for (i=1;i<=E->lmesh.NNO[lev];i++)  {
        E->SinCos[lev][j][0][i] = sin(E->SX[lev][j][1][i]);
        E->SinCos[lev][j][1][i] = sin(E->SX[lev][j][2][i]);
        E->SinCos[lev][j][2][i] = cos(E->SX[lev][j][1][i]);
        E->SinCos[lev][j][3][i] = cos(E->SX[lev][j][2][i]);
        }

  /*
if (E->control.verbose) {
  for (lev=E->mesh.levmin;lev<=E->mesh.levmax;lev++)   {
    fprintf(E->fp_out,"output_coordinates after rotation %d \n",lev);
    for (j=1;j<=E->sphere.caps_per_proc;j++)
      for (i=1;i<=E->lmesh.NNO[lev];i++)
        if(i%E->lmesh.NOZ[lev]==1)
             fprintf(E->fp_out,"%d %d %g %g %g\n",j,i,E->SX[lev][j][1][i],E->SX[lev][j][2][i],E->SX[lev][j][3][i]);
      }
  fflush(E->fp_out);
}
  */



  return;
}



void full_construct_tic_from_input(struct All_variables *E)
{
  int i, j, k, kk, m, p, node;
  int nox, noy, noz, gnoz;
  double r1, f1, t1;
  int mm, ll;
  double con;
  double modified_plgndr_a(int, int, double);
  void temperatures_conform_bcs();

  noy=E->lmesh.noy;
  nox=E->lmesh.nox;
  noz=E->lmesh.noz;
  gnoz=E->mesh.noz;


  if (E->convection.tic_method == 0) {


    /* set up a linear temperature profile first */
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=noy;i++)
	for(j=1;j<=nox;j++)
	  for(k=1;k<=noz;k++) {
	    node=k+(j-1)*noz+(i-1)*nox*noz;
	    r1=E->sx[m][3][node];
	    E->T[m][node] = E->control.TBCbotval - (E->control.TBCtopval + E->control.TBCbotval)*(r1 - E->sphere.ri)/(E->sphere.ro - E->sphere.ri);
	  }

    /* This part put a temperature anomaly at depth where the global
       node number is equal to load_depth. The horizontal pattern of
       the anomaly is given by spherical harmonic ll & mm. */

    for (p=0; p<E->convection.number_of_perturbations; p++) {
      mm = E->convection.perturb_mm[p];
      ll = E->convection.perturb_ll[p];
      con = E->convection.perturb_mag[p];
      kk = E->convection.load_depth[p];

      if ( (kk < 1) || (kk >= gnoz) ) continue;

      k = kk - E->lmesh.nzs + 1;
      if ( (k < 1) || (k >= noz) ) continue; /* if layer k is not inside this proc. */
      if (E->parallel.me_loc[1] == 0 && E->parallel.me_loc[2] == 0
	  && E->sphere.capid[1] == 1 )
	fprintf(stderr,"Initial temperature perturbation:  layer=%d  mag=%g  l=%d  m=%d\n", kk, con, ll, mm);

      for(m=1;m<=E->sphere.caps_per_proc;m++)
	for(i=1;i<=noy;i++)
	  for(j=1;j<=nox;j++) {
	    node=k+(j-1)*noz+(i-1)*nox*noz;
	    t1=E->sx[m][1][node];
	    f1=E->sx[m][2][node];

	    E->T[m][node] += con*modified_plgndr_a(ll,mm,t1)*cos(mm*f1);
	  }
    }
  }
  else if (E->convection.tic_method == 3) {
    /* set up a linear temperature profile first */
    for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(i=1;i<=noy;i++)
	for(j=1;j<=nox;j++)
	  for(k=1;k<=noz;k++) {
	    node=k+(j-1)*noz+(i-1)*nox*noz;
	    r1=E->sx[m][3][node];
        E->T[m][node] = (E->control.TBCtopval*E->sphere.ro 
                         - E->control.TBCbotval*E->sphere.ri) 
                        / (E->sphere.ro - E->sphere.ri)
                      + (E->control.TBCbotval - E->control.TBCtopval)
                        * E->sphere.ro * E->sphere.ri / r1
                        / (E->sphere.ro - E->sphere.ri);
      }
    /* This part put a temperature anomaly for whole mantle. The horizontal
       pattern of the anomaly is given by spherical harmonic ll & mm. */

    for (p=0; p<E->convection.number_of_perturbations; p++) {
      mm = E->convection.perturb_mm[p];
      ll = E->convection.perturb_ll[p];
      con = E->convection.perturb_mag[p];
      kk = E->convection.load_depth[p];

      if ( (kk < 1) || (kk >= gnoz) ) continue;

      if (E->parallel.me == 0)
	fprintf(stderr,"Initial temperature perturbation:  layer=%d  mag=%g  l=%d  m=%d\n", kk, con, ll, mm);

      for(m=1;m<=E->sphere.caps_per_proc;m++)
	for(i=1;i<=noy;i++)
	  for(j=1;j<=nox;j++)
            for(k=1;k<=noz;k++) {
	      node=k+(j-1)*noz+(i-1)*nox*noz;
	      t1=E->sx[m][1][node];
	      f1=E->sx[m][2][node];
	      r1=E->sx[m][3][node];
              E->T[m][node] += con*modified_plgndr_a(ll,mm,t1)
                  *(cos(mm*f1)+sin(mm*f1))
                  *sin(M_PI*(r1-E->sphere.ri)/(E->sphere.ro-E->sphere.ri));
	  }
    }
  }
  else if (E->convection.tic_method == 1) {

  }

  temperatures_conform_bcs(E);

  return;
}


/* setup boundary node and element arrays for bookkeeping */

void full_construct_boundary( struct All_variables *E)
{

  const int dims=E->mesh.nsd;

  int m, i, j, k, d, el, count;

  /* boundary = top + bottom */
  int max_size = 2*E->lmesh.elx*E->lmesh.ely + 1;
  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    E->boundary.element[m] = (int *)malloc(max_size*sizeof(int));

    for(d=1; d<=dims; d++)
      E->boundary.normal[m][d] = (int *)malloc(max_size*sizeof(int));
  }

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    count = 1;
    for(k=1; k<=E->lmesh.ely; k++)
      for(j=1; j<=E->lmesh.elx; j++) {
	if(E->parallel.me_loc[3] == 0) {
	  i = 1;
	  el = i + (j-1)*E->lmesh.elz + (k-1)*E->lmesh.elz*E->lmesh.elx;
	  E->boundary.element[m][count] = el;
	  E->boundary.normal[m][dims][count] = -1;
	  for(d=1; d<dims; d++)
	      E->boundary.normal[m][d][count] = 0;
	  ++count;
	}

	if(E->parallel.me_loc[3] == E->parallel.nprocz - 1) {
	  i = E->lmesh.elz;
	  el = i + (j-1)*E->lmesh.elz + (k-1)*E->lmesh.elz*E->lmesh.elx;
	  E->boundary.element[m][count] = el;
	  E->boundary.normal[m][dims][count] = 1;
	  for(d=1; d<dims; d++)
	    E->boundary.normal[m][d][count] = 0;
	  ++count;
	}

      } /* end for i, j, k */

    E->boundary.nel = count - 1;
  } /* end for m */
}
back to top