https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Regional_boundary_conditions.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include "element_definitions.h"
#include "global_defs.h"
#include <math.h>

#include "lith_age.h"

/* ========================================== */

static void horizontal_bc();
static void velocity_apply_periodic_bcs();
static void temperature_apply_periodic_bcs();
static void velocity_refl_vert_bc();
static void temperature_refl_vert_bc();

/* ========================================== */

void regional_velocity_boundary_conditions(E)
     struct All_variables *E;
{
  void velocity_imp_vert_bc();
  void read_velocity_boundary_from_file();
  void renew_top_velocity_boundary();
  void apply_side_sbc();

  int node,d,j,noz,lv;

  for(lv=E->mesh.gridmax;lv>=E->mesh.gridmin;lv--)
    for (j=1;j<=E->sphere.caps_per_proc;j++)     {
      noz = E->lmesh.NOZ[lv];

      if(E->mesh.topvbc == 0) {
	horizontal_bc(E,E->sphere.cap[j].VB,noz,1,0.0,VBX,0,lv,j);
	horizontal_bc(E,E->sphere.cap[j].VB,noz,3,0.0,VBZ,1,lv,j);
	horizontal_bc(E,E->sphere.cap[j].VB,noz,2,0.0,VBY,0,lv,j);
	horizontal_bc(E,E->sphere.cap[j].VB,noz,1,E->control.VBXtopval,SBX,1,lv,j);
	horizontal_bc(E,E->sphere.cap[j].VB,noz,3,0.0,SBZ,0,lv,j);
	horizontal_bc(E,E->sphere.cap[j].VB,noz,2,E->control.VBYtopval,SBY,1,lv,j);
	}
      else if(E->mesh.topvbc == 1) {
        horizontal_bc(E,E->sphere.cap[j].VB,noz,1,E->control.VBXtopval,VBX,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,3,0.0,VBZ,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,2,E->control.VBYtopval,VBY,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,1,0.0,SBX,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,3,0.0,SBZ,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,2,0.0,SBY,0,lv,j);

	if(E->control.vbcs_file)   {
	  read_velocity_boundary_from_file(E);   /* read in the velocity boundary condition from file */
	}
      }
      else if(E->mesh.topvbc == 2) {
	/* This extra BC is for a open top */
        horizontal_bc(E,E->sphere.cap[j].VB,noz,1,0.0,VBX,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,3,0.0,VBZ,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,2,0.0,VBY,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,1,E->control.VBXtopval,SBX,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,3,0.0,SBZ,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,noz,2,E->control.VBYtopval,SBY,1,lv,j);
        }



      if(E->mesh.botvbc == 0) {
        horizontal_bc(E,E->sphere.cap[j].VB,1,1,0.0,VBX,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,3,0.0,VBZ,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,2,0.0,VBY,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,1,E->control.VBXbotval,SBX,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,3,0.0,SBZ,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,2,E->control.VBYbotval,SBY,1,lv,j);
        }
      else if(E->mesh.botvbc == 1) {
        horizontal_bc(E,E->sphere.cap[j].VB,1,1,E->control.VBXbotval,VBX,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,3,0.0,VBZ,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,2,E->control.VBYbotval,VBY,1,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,1,0.0,SBX,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,3,0.0,SBZ,0,lv,j);
        horizontal_bc(E,E->sphere.cap[j].VB,1,2,0.0,SBY,0,lv,j);
        }
      }    /* end for j and lv */

      velocity_refl_vert_bc(E);

      if(E->control.side_sbcs)
	apply_side_sbc(E);

      if(E->control.verbose) {
	for (j=1;j<=E->sphere.caps_per_proc;j++)
	  for (node=1;node<=E->lmesh.nno;node++)
	    fprintf(E->fp_out,"m=%d VB== %d %g %g %g flag %u %u %u\n",j,node,E->sphere.cap[j].VB[1][node],E->sphere.cap[j].VB[2][node],E->sphere.cap[j].VB[3][node],E->node[j][node]&VBX,E->node[j][node]&VBY,E->node[j][node]&VBZ);
	fflush(E->fp_out);
      }
      /* If any imposed internal velocity structure it goes here */


   return;
}


/* ========================================== */

void regional_temperature_boundary_conditions(E)
     struct All_variables *E;
{
  void temperature_imposed_vert_bcs();
  void temperature_lith_adj();
  void temperatures_conform_bcs();
  int j,lev,noz;

  lev = E->mesh.levmax;


     temperature_refl_vert_bc(E);

  for (j=1;j<=E->sphere.caps_per_proc;j++)    {
    noz = E->lmesh.noz;
    if(E->mesh.toptbc == 1)    {
      horizontal_bc(E,E->sphere.cap[j].TB,noz,3,E->control.TBCtopval,TBZ,1,lev,j);
      horizontal_bc(E,E->sphere.cap[j].TB,noz,3,E->control.TBCtopval,FBZ,0,lev,j);
      }
    else   {
      horizontal_bc(E,E->sphere.cap[j].TB,noz,3,E->control.TBCtopval,TBZ,0,lev,j);
      horizontal_bc(E,E->sphere.cap[j].TB,noz,3,E->control.TBCtopval,FBZ,1,lev,j);
      }

    if(E->mesh.bottbc == 1)    {
      horizontal_bc(E,E->sphere.cap[j].TB,1,3,E->control.TBCbotval,TBZ,1,lev,j);
      horizontal_bc(E,E->sphere.cap[j].TB,1,3,E->control.TBCbotval,FBZ,0,lev,j);
      }
    else        {
      horizontal_bc(E,E->sphere.cap[j].TB,1,3,E->control.TBCbotval,TBZ,0,lev,j);
      horizontal_bc(E,E->sphere.cap[j].TB,1,3,E->control.TBCbotval,FBZ,1,lev,j);
      }

    if((E->control.temperature_bound_adj==1) || (E->control.lith_age_time==1))  {
/* set the regions in which to use lithosphere files to determine temperature
   note that this is called if the lithosphere age in inputted every time step
   OR it is only maintained in the boundary regions */
      lith_age_temperature_bound_adj(E,lev);
    }

    }     /* end for j */

   temperatures_conform_bcs(E);
   E->temperatures_conform_bcs = temperatures_conform_bcs;

   return; }

/* ========================================== */

static void velocity_refl_vert_bc(E)
     struct All_variables *E;
{
  int m,i,j,ii,jj;
  int node1,node2;
  int level,nox,noy,noz;
  const int dims=E->mesh.nsd;

 /*  for two YOZ planes   */


  if (E->parallel.me_loc[1]==0 || E->parallel.me_loc[1]==E->parallel.nprocx-1)
   for (m=1;m<=E->sphere.caps_per_proc;m++)
    for(j=1;j<=E->lmesh.noy;j++)
      for(i=1;i<=E->lmesh.noz;i++)  {
        node1 = i + (j-1)*E->lmesh.noz*E->lmesh.nox;
        node2 = node1 + (E->lmesh.nox-1)*E->lmesh.noz;

        ii = i + E->lmesh.nzs - 1;
        if (E->parallel.me_loc[1]==0 )  {
           E->sphere.cap[m].VB[1][node1] = 0.0;
           if((ii != 1) && (ii != E->mesh.noz))
              E->sphere.cap[m].VB[3][node1] = 0.0;
               }
        if (E->parallel.me_loc[1]==E->parallel.nprocx-1)  {
           E->sphere.cap[m].VB[1][node2] = 0.0;
           if((ii != 1) && (ii != E->mesh.noz))
              E->sphere.cap[m].VB[3][node2] = 0.0;
           }
        }      /* end loop for i and j */

/*  for two XOZ  planes  */


    if (E->parallel.me_loc[2]==0)
     for (m=1;m<=E->sphere.caps_per_proc;m++)
      for(j=1;j<=E->lmesh.nox;j++)
        for(i=1;i<=E->lmesh.noz;i++)       {
          node1 = i + (j-1)*E->lmesh.noz;
          ii = i + E->lmesh.nzs - 1;

          E->sphere.cap[m].VB[2][node1] = 0.0;
          if((ii != 1) && (ii != E->mesh.noz))
            E->sphere.cap[m].VB[3][node1] = 0.0;
          }    /* end of loop i & j */

    if (E->parallel.me_loc[2]==E->parallel.nprocy-1)
     for (m=1;m<=E->sphere.caps_per_proc;m++)
      for(j=1;j<=E->lmesh.nox;j++)
        for(i=1;i<=E->lmesh.noz;i++)       {
          node2 = (E->lmesh.noy-1)*E->lmesh.noz*E->lmesh.nox + i + (j-1)*E->lmesh.noz;
          ii = i + E->lmesh.nzs - 1;

          E->sphere.cap[m].VB[2][node2] = 0.0;
          if((ii != 1) && (ii != E->mesh.noz))
            E->sphere.cap[m].VB[3][node2] = 0.0;
          }    /* end of loop i & j */


  /* all vbc's apply at all levels  */
  for(level=E->mesh.levmax;level>=E->mesh.levmin;level--) {

    if ( (E->control.CONJ_GRAD && level==E->mesh.levmax) ||E->control.NMULTIGRID)  {
    noz = E->lmesh.NOZ[level] ;
    noy = E->lmesh.NOY[level] ;
    nox = E->lmesh.NOX[level] ;

     for (m=1;m<=E->sphere.caps_per_proc;m++)  {
       if (E->parallel.me_loc[1]==0 || E->parallel.me_loc[1]==E->parallel.nprocx-1) {
         for(j=1;j<=noy;j++)
          for(i=1;i<=noz;i++) {
          node1 = i + (j-1)*noz*nox;
          node2 = node1 + (nox-1)*noz;
          ii = i + E->lmesh.NZS[level] - 1;
          if (E->parallel.me_loc[1]==0 )  {
            E->NODE[level][m][node1] = E->NODE[level][m][node1] | VBX;
            E->NODE[level][m][node1] = E->NODE[level][m][node1] & (~SBX);
            if((ii!=1) && (ii!=E->mesh.NOZ[level])) {
               E->NODE[level][m][node1] = E->NODE[level][m][node1] & (~VBY);
               E->NODE[level][m][node1] = E->NODE[level][m][node1] | SBY;
               E->NODE[level][m][node1] = E->NODE[level][m][node1] & (~VBZ);
               E->NODE[level][m][node1] = E->NODE[level][m][node1] | SBZ;
               }
            }
          if (E->parallel.me_loc[1]==E->parallel.nprocx-1)  {
            E->NODE[level][m][node2] = E->NODE[level][m][node2] | VBX;
            E->NODE[level][m][node2] = E->NODE[level][m][node2] & (~SBX);
            if((ii!=1) && (ii!=E->mesh.NOZ[level])) {
              E->NODE[level][m][node2] = E->NODE[level][m][node2] & (~VBY);
              E->NODE[level][m][node2] = E->NODE[level][m][node2] | SBY;
              E->NODE[level][m][node2] = E->NODE[level][m][node2] & (~VBZ);
              E->NODE[level][m][node2] = E->NODE[level][m][node2] | SBZ;
                  }
            }
          }   /* end for loop i & j */

         }


      if (E->parallel.me_loc[2]==0)
        for(j=1;j<=nox;j++)
          for(i=1;i<=noz;i++) {
            node1 = i + (j-1)*noz;
            ii = i + E->lmesh.NZS[level] - 1;
            jj = j + E->lmesh.NXS[level] - 1;

            E->NODE[level][m][node1] = E->NODE[level][m][node1] | VBY;
            E->NODE[level][m][node1] = E->NODE[level][m][node1] & (~SBY);
            if((ii!= 1) && (ii != E->mesh.NOZ[level]))  {
                E->NODE[level][m][node1] = E->NODE[level][m][node1] & (~VBZ);
                E->NODE[level][m][node1] = E->NODE[level][m][node1] | SBZ;
                }
            if((jj!=1) && (jj!=E->mesh.NOX[level]) && (ii!=1) && (ii!=E->mesh.NOZ[level])){
                E->NODE[level][m][node1] = E->NODE[level][m][node1] & (~VBX);
                E->NODE[level][m][node1] = E->NODE[level][m][node1] | SBX;
                }
                }    /* end for loop i & j  */

      if (E->parallel.me_loc[2]==E->parallel.nprocy-1)
        for(j=1;j<=nox;j++)
          for(i=1;i<=noz;i++)       {
            node2 = (noy-1)*noz*nox + i + (j-1)*noz;
            ii = i + E->lmesh.NZS[level] - 1;
            jj = j + E->lmesh.NXS[level] - 1;
            E->NODE[level][m][node2] = E->NODE[level][m][node2] | VBY;
            E->NODE[level][m][node2] = E->NODE[level][m][node2] & (~SBY);
            if((ii!= 1) && (ii != E->mesh.NOZ[level]))  {
                E->NODE[level][m][node2] = E->NODE[level][m][node2] & (~VBZ);
                E->NODE[level][m][node2] = E->NODE[level][m][node2] | SBZ;
                }
            if((jj!=1) && (jj!=E->mesh.NOX[level]) && (ii!=1) && (ii!=E->mesh.NOZ[level])){
                E->NODE[level][m][node2] = E->NODE[level][m][node2] & (~VBX);
                E->NODE[level][m][node2] = E->NODE[level][m][node2] | SBX;
                }
            }

       }       /* end for m  */
       }
       }       /*  end for loop level  */

  return;
}

static void temperature_refl_vert_bc(E)
     struct All_variables *E;
{
  int i,j,m;
  int node1,node2;
  const int dims=E->mesh.nsd;

 /* Temps and bc-values  at top level only */

   if (E->parallel.me_loc[1]==0 || E->parallel.me_loc[1]==E->parallel.nprocx-1)
    for(m=1;m<=E->sphere.caps_per_proc;m++)
    for(j=1;j<=E->lmesh.noy;j++)
      for(i=1;i<=E->lmesh.noz;i++) {
        node1 = i + (j-1)*E->lmesh.noz*E->lmesh.nox;
        node2 = node1 + (E->lmesh.nox-1)*E->lmesh.noz;
        if (E->parallel.me_loc[1]==0 )                   {
          E->node[m][node1] = E->node[m][node1] & (~TBX);
          E->node[m][node1] = E->node[m][node1] | FBX;
          E->sphere.cap[m].TB[1][node1] = 0.0;
              }
        if (E->parallel.me_loc[1]==E->parallel.nprocx-1)   {
          E->node[m][node2] = E->node[m][node2] & (~TBX);
          E->node[m][node2] = E->node[m][node2] | FBX;
          E->sphere.cap[m].TB[1][node2] = 0.0;
              }
        }       /* end for loop i & j */

    if (E->parallel.me_loc[2]==0)
     for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(j=1;j<=E->lmesh.nox;j++)
        for(i=1;i<=E->lmesh.noz;i++) {
          node1 = i + (j-1)*E->lmesh.noz;
          E->node[m][node1] = E->node[m][node1] & (~TBY);
              E->node[m][node1] = E->node[m][node1] | FBY;
              E->sphere.cap[m].TB[2][node1] = 0.0;
              }

    if (E->parallel.me_loc[2]==E->parallel.nprocy-1)
     for(m=1;m<=E->sphere.caps_per_proc;m++)
      for(j=1;j<=E->lmesh.nox;j++)
        for(i=1;i<=E->lmesh.noz;i++) {
          node2 = i +(j-1)*E->lmesh.noz + (E->lmesh.noy-1)*E->lmesh.noz*E->lmesh.nox;
          E->node[m][node2] = E->node[m][node2] & (~TBY);
          E->node[m][node2] = E->node[m][node2] | FBY;
          E->sphere.cap[m].TB[3][node2] = 0.0;
          }    /* end loop for i and j */

  return;
}


/*  =========================================================  */


static void horizontal_bc(E,BC,ROW,dirn,value,mask,onoff,level,m)
     struct All_variables *E;
     float *BC[];
     int ROW;
     int dirn;
     float value;
     unsigned int mask;
     char onoff;
     int level,m;

{
  int i,j,node,rowl;

    /* safety feature */
  if(dirn > E->mesh.nsd)
     return;

  if (ROW==1)
      rowl = 1;
  else
      rowl = E->lmesh.NOZ[level];

  if ( (ROW==1 && E->parallel.me_loc[3]==0) ||
       (ROW==E->lmesh.NOZ[level] && E->parallel.me_loc[3]==E->parallel.nprocz-1) ) {

    /* turn bc marker to zero */
    if (onoff == 0)          {
      for(j=1;j<=E->lmesh.NOY[level];j++)
    	for(i=1;i<=E->lmesh.NOX[level];i++)     {
    	  node = rowl+(i-1)*E->lmesh.NOZ[level]+(j-1)*E->lmesh.NOX[level]*E->lmesh.NOZ[level];
    	  E->NODE[level][m][node] = E->NODE[level][m][node] & (~ mask);
    	  }        /* end for loop i & j */
      }

    /* turn bc marker to one */
    else        {
      for(j=1;j<=E->lmesh.NOY[level];j++)
        for(i=1;i<=E->lmesh.NOX[level];i++)       {
    	  node = rowl+(i-1)*E->lmesh.NOZ[level]+(j-1)*E->lmesh.NOX[level]*E->lmesh.NOZ[level];
    	  E->NODE[level][m][node] = E->NODE[level][m][node] | (mask);

    	  if(level==E->mesh.levmax)   /* NB */
    	    BC[dirn][node] = value;
    	  }     /* end for loop i & j */
      }

    }             /* end for if ROW */

  return;
}


static void velocity_apply_periodic_bcs(E)
    struct All_variables *E;
{
  int n1,n2,level;
  int i,j,ii,jj;
  const int dims=E->mesh.nsd;

  fprintf(E->fp,"Periodic boundary conditions\n");

  return;
  }

static void temperature_apply_periodic_bcs(E)
    struct All_variables *E;
{
 const int dims=E->mesh.nsd;

 fprintf(E->fp,"pERIodic temperature boundary conditions\n");

  return;
  }



/* version */
/* $Id$ */

/* End of file  */
back to top