https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Regional_parallel_related.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include <mpi.h>
#include <math.h>

#include "element_definitions.h"
#include "global_defs.h"
#include "sphere_communication.h"

#include "parallel_related.h"


static void set_horizontal_communicator(struct All_variables*);
static void set_vertical_communicator(struct All_variables*);

static void exchange_node_d(struct All_variables *, double**, int);
static void exchange_node_f(struct All_variables *, float**, int);


/* ============================================ */
/* ============================================ */

void regional_parallel_processor_setup(struct All_variables *E)
  {

  int i,j,k,m,me,temp,pid_surf;
  int surf_proc_per_cap, proc_per_cap, total_proc;

  me = E->parallel.me;

  surf_proc_per_cap = E->parallel.nprocx * E->parallel.nprocy;
  proc_per_cap = surf_proc_per_cap * E->parallel.nprocz;
  total_proc = E->sphere.caps * proc_per_cap;
  E->parallel.total_surf_proc = E->sphere.caps * surf_proc_per_cap;

  if ( total_proc != E->parallel.nproc ) {
    if (E->parallel.me==0) fprintf(stderr,"!!!! # of requested CPU is incorrect \n");
    parallel_process_termination();
    }

  /* determine the location of processors in each cap */
  /* z direction first */
  j = me % E->parallel.nprocz;
  E->parallel.me_loc[3] = j;

  /* x direction then */
  k = (me - j)/E->parallel.nprocz % E->parallel.nprocx;
  E->parallel.me_loc[1] = k;

  /* y direction then */
  i = ((me - j)/E->parallel.nprocz - k)/E->parallel.nprocx % E->parallel.nprocy;
  E->parallel.me_loc[2] = i;

  E->sphere.caps_per_proc = 1;

  /* determine cap id for each cap in a given processor  */
  pid_surf = me/E->parallel.nprocz;
  i = cases[E->sphere.caps_per_proc];

  for (j=1;j<=E->sphere.caps_per_proc;j++)  {
    E->sphere.capid[j] = 1;
    }

  /* steup location-to-processor map */
  E->parallel.loc2proc_map = (int ****) malloc(E->sphere.caps*sizeof(int ***));
  for (m=0;m<E->sphere.caps;m++)  {
    E->parallel.loc2proc_map[m] = (int ***) malloc(E->parallel.nprocx*sizeof(int **));
    for (i=0;i<E->parallel.nprocx;i++) {
      E->parallel.loc2proc_map[m][i] = (int **) malloc(E->parallel.nprocy*sizeof(int *));
      for (j=0;j<E->parallel.nprocy;j++)
	E->parallel.loc2proc_map[m][i][j] = (int *) malloc(E->parallel.nprocz*sizeof(int));
    }
  }

  for (m=0;m<E->sphere.caps;m++)
    for (i=0;i<E->parallel.nprocx;i++)
      for (j=0;j<E->parallel.nprocy;j++)
	for (k=0;k<E->parallel.nprocz;k++) {
	    E->parallel.loc2proc_map[m][i][j][k] = m*proc_per_cap
	      + j*E->parallel.nprocx*E->parallel.nprocz
	      + i*E->parallel.nprocz + k;
	}

  if (E->control.verbose) {
    fprintf(E->fp_out,"me=%d loc1=%d loc2=%d loc3=%d\n",me,E->parallel.me_loc[1],E->parallel.me_loc[2],E->parallel.me_loc[3]);
    for (j=1;j<=E->sphere.caps_per_proc;j++) {
      fprintf(E->fp_out,"capid[%d]=%d \n",j,E->sphere.capid[j]);
    }
    for (m=0;m<E->sphere.caps;m++)
      for (j=0;j<E->parallel.nprocy;j++)
	for (i=0;i<E->parallel.nprocx;i++)
	  for (k=0;k<E->parallel.nprocz;k++)
	    fprintf(E->fp_out,"loc2proc_map[cap=%d][x=%d][y=%d][z=%d] = %d\n",
		    m,i,j,k,E->parallel.loc2proc_map[m][i][j][k]);

    fflush(E->fp_out);
  }

  set_horizontal_communicator(E);
  set_vertical_communicator(E);

  E->exchange_node_d = exchange_node_d;
  E->exchange_node_f = exchange_node_f;

  return;
  }


static void set_horizontal_communicator(struct All_variables *E)
{
  MPI_Group world_g, horizon_g;
  int i,j,k,m,n;
  int *processors;

  processors = (int *) malloc((E->parallel.total_surf_proc+1)*sizeof(int));

  k = E->parallel.me_loc[3];
  n = 0;
  for (m=0;m<E->sphere.caps;m++)
    for (i=0;i<E->parallel.nprocx;i++)
      for (j=0;j<E->parallel.nprocy;j++) {
	processors[n] = E->parallel.loc2proc_map[m][i][j][k];
	n++;
      }

  if (E->control.verbose) {
    fprintf(E->fp_out,"horizontal group of me=%d loc3=%d\n",E->parallel.me,E->parallel.me_loc[3]);
    for (j=0;j<E->parallel.total_surf_proc;j++) {
      fprintf(E->fp_out,"%d proc=%d\n",j,processors[j]);
    }
    fflush(E->fp_out);
  }

  MPI_Comm_group(E->parallel.world, &world_g);
  MPI_Group_incl(world_g, E->parallel.total_surf_proc, processors, &horizon_g);
  MPI_Comm_create(E->parallel.world, horizon_g, &(E->parallel.horizontal_comm));


  MPI_Group_free(&horizon_g);
  MPI_Group_free(&world_g);
  free((void *) processors);

  return;
}


static void set_vertical_communicator(struct All_variables *E)
{
  MPI_Group world_g, vertical_g;
  int i,j,k,m;
  int *processors;

  processors = (int *)malloc((E->parallel.nprocz+2)*sizeof(int));
  if (!processors)
    fprintf(stderr,"no memory!!\n");

  m = E->sphere.capid[1] - 1;  /* assume 1 cap per proc. */
  i = E->parallel.me_loc[1];
  j = E->parallel.me_loc[2];

  for (k=0;k<E->parallel.nprocz;k++) {
      processors[k] = E->parallel.loc2proc_map[m][i][j][k];
  }

  if (E->control.verbose) {
    fprintf(E->fp_out,"vertical group of me=%d loc1=%d loc2=%d\n",E->parallel.me,E->parallel.me_loc[1],E->parallel.me_loc[2]);
    for (k=0;k<E->parallel.nprocz;k++) {
      fprintf(E->fp_out,"%d proc=%d\n",k,processors[k]);
    }
    fflush(E->fp_out);
  }

  MPI_Comm_group(E->parallel.world, &world_g);
  MPI_Group_incl(world_g, E->parallel.nprocz, processors, &vertical_g);
  MPI_Comm_create(E->parallel.world, vertical_g, &(E->parallel.vertical_comm));

  MPI_Group_free(&vertical_g);
  MPI_Group_free(&world_g);
  free((void *) processors);
}



/* =========================================================================
get element information for each processor.
 ========================================================================= */

void regional_parallel_domain_decomp0(struct All_variables *E)
  {

  int i,nox,noz,noy,me;

  me = E->parallel.me;

  E->lmesh.elx = E->mesh.elx/E->parallel.nprocx;
  E->lmesh.elz = E->mesh.elz/E->parallel.nprocz;
  E->lmesh.ely = E->mesh.ely/E->parallel.nprocy;
  E->lmesh.nox = E->lmesh.elx + 1;
  E->lmesh.noz = E->lmesh.elz + 1;
  E->lmesh.noy = E->lmesh.ely + 1;

  E->lmesh.exs = E->parallel.me_loc[1]*E->lmesh.elx;
  E->lmesh.eys = E->parallel.me_loc[2]*E->lmesh.ely;
  E->lmesh.ezs = E->parallel.me_loc[3]*E->lmesh.elz;
  E->lmesh.nxs = E->parallel.me_loc[1]*E->lmesh.elx+1;
  E->lmesh.nys = E->parallel.me_loc[2]*E->lmesh.ely+1;
  E->lmesh.nzs = E->parallel.me_loc[3]*E->lmesh.elz+1;

  E->lmesh.nno = E->lmesh.noz*E->lmesh.nox*E->lmesh.noy;
  E->lmesh.nel = E->lmesh.ely*E->lmesh.elx*E->lmesh.elz;
  E->lmesh.npno = E->lmesh.nel;

  E->lmesh.nsf = E->lmesh.nno/E->lmesh.noz;
  E->lmesh.snel = E->lmesh.elx*E->lmesh.ely;


  for(i=E->mesh.levmax;i>=E->mesh.levmin;i--)   {

     if (E->control.NMULTIGRID||E->control.EMULTIGRID)  {
        nox = E->mesh.mgunitx * (int) pow(2.0,(double)i) + 1;
        noy = E->mesh.mgunity * (int) pow(2.0,(double)i) + 1;
        noz = E->lmesh.elz/(int)pow(2.0,(double)(E->mesh.levmax-i))+1;
        E->parallel.redundant[i]=0;
        }
     else
        { noz = E->lmesh.noz;
          noy = E->mesh.mgunity * (int) pow(2.0,(double)i) + 1;
          nox = E->mesh.mgunitx * (int) pow(2.0,(double)i) + 1;
          if(i<E->mesh.levmax) noz=2;
        }

     E->lmesh.ELX[i] = nox-1;
     E->lmesh.ELY[i] = noy-1;
     E->lmesh.ELZ[i] = noz-1;
     E->lmesh.NOZ[i] = noz;
     E->lmesh.NOY[i] = noy;
     E->lmesh.NOX[i] = nox;
     E->lmesh.NNO[i] = nox * noz * noy;
     E->lmesh.NNOV[i] = E->lmesh.NNO[i];
     E->lmesh.SNEL[i] = E->lmesh.ELX[i]*E->lmesh.ELY[i];

     E->lmesh.NEL[i] = (nox-1) * (noz-1) * (noy-1);
     E->lmesh.NPNO[i] = E->lmesh.NEL[i] ;

     E->lmesh.NEQ[i] = E->mesh.nsd * E->lmesh.NNOV[i] ;

     E->lmesh.EXS[i] = E->parallel.me_loc[1]*E->lmesh.ELX[i];
     E->lmesh.EYS[i] = E->parallel.me_loc[2]*E->lmesh.ELY[i];
     E->lmesh.EZS[i] = E->parallel.me_loc[3]*E->lmesh.ELZ[i];
     E->lmesh.NXS[i] = E->parallel.me_loc[1]*E->lmesh.ELX[i]+1;
     E->lmesh.NYS[i] = E->parallel.me_loc[2]*E->lmesh.ELY[i]+1;
     E->lmesh.NZS[i] = E->parallel.me_loc[3]*E->lmesh.ELZ[i]+1;

     }

/*
fprintf(stderr,"b %d %d %d %d %d %d %d\n",E->parallel.me,E->parallel.me_loc[1],E->parallel.me_loc[2],E->parallel.me_loc[3],E->lmesh.nzs,E->lmesh.nys,E->lmesh.noy);
*/
/* parallel_process_termination();
*/
  return;
  }




/* ============================================
 determine boundary nodes for
 exchange info across the boundaries
 ============================================ */

void regional_parallel_domain_boundary_nodes(E)
  struct All_variables *E;
  {

  void parallel_process_termination();

  int m,i,ii,j,k,l,node,el,lnode;
  int lev,ele,elx,elz,ely,nel,nno,nox,noz,noy;
  FILE *fp,*fp1;
  char output_file[255];

  for(lev=E->mesh.gridmin;lev<=E->mesh.gridmax;lev++)   {
    for(m=1;m<=E->sphere.caps_per_proc;m++)   {
      nel = E->lmesh.NEL[lev];
      elx = E->lmesh.ELX[lev];
      elz = E->lmesh.ELZ[lev];
      ely = E->lmesh.ELY[lev];
      nox = E->lmesh.NOX[lev];
      noy = E->lmesh.NOY[lev];
      noz = E->lmesh.NOZ[lev];
      nno = E->lmesh.NNO[lev];

/* do the ZOY boundary elements first */
      lnode = 0;
      ii =1;              /* left */
      for(j=1;j<=noz;j++)
      for(k=1;k<=noy;k++)  {
        node = j + (k-1)*noz*nox;
        E->parallel.NODE[lev][m][++lnode].bound[ii] =  node;
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | OFFSIDE;
        }

      E->parallel.NUM_NNO[lev][m].bound[ii] = lnode;


      lnode = 0;
      ii =2;              /* right */
      for(j=1;j<=noz;j++)
      for(k=1;k<=noy;k++)      {
        node = (nox-1)*noz + j + (k-1)*noz*nox;
        E->parallel.NODE[lev][m][++lnode].bound[ii] =  node;
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | OFFSIDE;
        }

      E->parallel.NUM_NNO[lev][m].bound[ii] = lnode;


/* do XOY boundary elements */
      ii=5;                           /* bottom */
      lnode=0;
      for(k=1;k<=noy;k++)
      for(i=1;i<=nox;i++)   {
        node = (k-1)*nox*noz + (i-1)*noz + 1;
        E->parallel.NODE[lev][m][++lnode].bound[ii] = node;
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | OFFSIDE;
        }

      E->parallel.NUM_NNO[lev][m].bound[ii] = lnode;

      ii=6;                           /* top  */
      lnode=0;
      for(k=1;k<=noy;k++)
      for(i=1;i<=nox;i++)  {
        node = (k-1)*nox*noz + i*noz;
        E->parallel.NODE[lev][m][++lnode].bound[ii] = node;
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | OFFSIDE;
        }

      E->parallel.NUM_NNO[lev][m].bound[ii] = lnode;


/* do XOZ boundary elements for 3D */
      ii=3;                           /* front */
      lnode=0;
      for(j=1;j<=noz;j++)
      for(i=1;i<=nox;i++)   {
        node = (i-1)*noz +j;
        E->parallel.NODE[lev][m][++lnode].bound[ii] = node;
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | OFFSIDE;
        }

      E->parallel.NUM_NNO[lev][m].bound[ii] = lnode;

      ii=4;                           /* rear */
      lnode=0;
      for(j=1;j<=noz;j++)
      for(i=1;i<=nox;i++)   {
        node = noz*nox*(noy-1) + (i-1)*noz +j;
        E->parallel.NODE[lev][m][++lnode].bound[ii] = node;
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | OFFSIDE;
        }

      E->parallel.NUM_NNO[lev][m].bound[ii] = lnode;

         /* determine the overlapped nodes between caps or between proc */

    if (E->parallel.me_loc[1]!=E->parallel.nprocx-1)
      for (lnode=1;lnode<=E->parallel.NUM_NNO[lev][m].bound[2];lnode++) {
        node = E->parallel.NODE[lev][m][lnode].bound[2];
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | SKIP;
        }

    if (E->parallel.me_loc[2]!=E->parallel.nprocy-1)
      for (lnode=1;lnode<=E->parallel.NUM_NNO[lev][m].bound[4];lnode++) {
        node = E->parallel.NODE[lev][m][lnode].bound[4];
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | SKIP;
        }

    if (E->parallel.me_loc[3]!=E->parallel.nprocz-1)
      for (lnode=1;lnode<=E->parallel.NUM_NNO[lev][m].bound[6];lnode++) {
        node = E->parallel.NODE[lev][m][lnode].bound[6];
        E->NODE[lev][m][node] = E->NODE[lev][m][node] | SKIP;
        }

      }       /* end for m */
    }   /* end for level */

  /* count # of global nodes, ignoring overlapping nodes */
  ii=0;
  for (m=1;m<=E->sphere.caps_per_proc;m++)
    for (node=1;node<=E->lmesh.nno;node++)
      if(E->node[m][node] & SKIPS)
        ++ii;

  MPI_Allreduce(&ii, &node, 1, MPI_INT, MPI_SUM, E->parallel.world);

  E->mesh.nno = E->lmesh.nno*E->parallel.nproc - node - 2*E->mesh.noz;
  E->mesh.neq = E->mesh.nno*3;


if (E->control.verbose) {
 fprintf(E->fp_out,"output_shared_nodes %d \n",E->parallel.me);
 for(lev=E->mesh.gridmax;lev>=E->mesh.gridmin;lev--)
   for (m=1;m<=E->sphere.caps_per_proc;m++)      {
    fprintf(E->fp_out,"lev=%d  me=%d capid=%d m=%d \n",lev,E->parallel.me,E->sphere.capid[m],m);
    for (ii=1;ii<=6;ii++)
      for (i=1;i<=E->parallel.NUM_NNO[lev][m].bound[ii];i++)
        fprintf(E->fp_out,"ii=%d   %d %d \n",ii,i,E->parallel.NODE[lev][m][i].bound[ii]);

    lnode=0;
    for (node=1;node<=E->lmesh.nno;node++)
      if((E->NODE[lev][m][node] & SKIP)) {
        lnode++;
        fprintf(E->fp_out,"skip %d %d \n",lnode,node);
        }
    }
 fflush(E->fp_out);
 }



  return;
  }


/* ============================================
 determine communication routs  and boundary ID for
 exchange info across the boundaries
 assuming fault nodes are in the top row of processors
 ============================================ */

void regional_parallel_communication_routs_v(E)
  struct All_variables *E;
  {

  int m,i,ii,j,k,l,node,el,elt,lnode,jj,doff,target_cap;
  int lev,elx,elz,ely,nno,nox,noz,noy,kkk,kk,kf,kkkp;
  int me, nproczl,nprocxl,nprocyl;
  int temp_dims,addi_doff;
  int cap,lx,ly,lz,dir;
  FILE *fp,*fp1,*fp2;
  char output_file[255];

  const int dims=E->mesh.nsd;

  me = E->parallel.me;
  nproczl = E->parallel.nprocz;
  nprocyl = E->parallel.nprocy;
  nprocxl = E->parallel.nprocx;
  lx = E->parallel.me_loc[1];
  ly = E->parallel.me_loc[2];
  lz = E->parallel.me_loc[3];

        /* determine the communications in horizontal direction        */
  for(lev=E->mesh.gridmax;lev>=E->mesh.gridmin;lev--)       {
    nox = E->lmesh.NOX[lev];
    noz = E->lmesh.NOZ[lev];
    noy = E->lmesh.NOY[lev];
    ii=0;
    kkk=0;


    for(m=1;m<=E->sphere.caps_per_proc;m++)    {
      cap = E->sphere.capid[m] - 1;  /* which cap I am in (0~11) */

          for(i=1;i<=2;i++)       {       /* do YOZ boundaries & OY lines */

        ii ++;
        E->parallel.NUM_PASS[lev][m].bound[ii] = 1;
        if(E->parallel.me_loc[1]==0 && i==1)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;
        else if(E->parallel.me_loc[1]==nprocxl-1 && i==2)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;

        if (E->parallel.NUM_PASS[lev][m].bound[ii] == 1)  {
          kkk ++;
              /* determine the pass ID for ii-th boundary and kkk-th pass */

          /*E->parallel.PROCESSOR[lev][m].pass[kkk]=me-((i==1)?1:-1)*nproczl; */
	  dir = ( (i==1)? 1 : -1);
          E->parallel.PROCESSOR[lev][m].pass[kkk]=E->parallel.loc2proc_map[cap][lx-dir][ly][lz];

              E->parallel.NUM_NODE[lev][m].pass[kkk] = E->parallel.NUM_NNO[lev][m].bound[ii];
          jj = 0;
          for (k=1;k<=E->parallel.NUM_NODE[lev][m].pass[kkk];k++)   {
            lnode = k;
            node = E->parallel.NODE[lev][m][lnode].bound[ii];
            E->parallel.EXCHANGE_NODE[lev][m][k].pass[kkk] = node;
            temp_dims = dims;

                    for(doff=1;doff<=temp_dims;doff++)
                         E->parallel.EXCHANGE_ID[lev][m][++jj].pass[kkk] = E->ID[lev][m][node].doff[doff];
            }  /* end for node k */

              E->parallel.NUM_NEQ[lev][m].pass[kkk] = jj;

          }   /* end if */
            }  /* end for i */


        for(k=1;k<=2;k++)        {      /* do XOZ boundaries & OZ lines */
        ii ++;
        E->parallel.NUM_PASS[lev][m].bound[ii] = 1;
        if(E->parallel.me_loc[2]==0 && k==1)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;
        else if(E->parallel.me_loc[2]==nprocyl-1 && k==2)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;

        if(E->parallel.NUM_PASS[lev][m].bound[ii] == 1)  {

          kkk ++;
              /* determine the pass ID for ii-th boundary and kkk-th pass */

          /*E->parallel.PROCESSOR[lev][m].pass[kkk]=me-((k==1)?1:-1)*nprocxl*nproczl; */
	  dir = ( (k==1)? 1 : -1);
          E->parallel.PROCESSOR[lev][m].pass[kkk]=E->parallel.loc2proc_map[cap][lx][ly-dir][lz];

          E->parallel.NUM_NODE[lev][m].pass[kkk] = E->parallel.NUM_NNO[lev][m].bound[ii];

          jj = 0; kf = 0;
          for (kk=1;kk<=E->parallel.NUM_NODE[lev][m].pass[kkk];kk++)   {
            lnode = kk;
            node = E->parallel.NODE[lev][m][lnode].bound[ii];
            E->parallel.EXCHANGE_NODE[lev][m][kk].pass[kkk] = node;
            temp_dims = dims;
                    for(doff=1;doff<=temp_dims;doff++)
                         E->parallel.EXCHANGE_ID[lev][m][++jj].pass[kkk] = E->ID[lev][m][node].doff[doff];
            }  /* end for node kk */

              E->parallel.NUM_NEQ[lev][m].pass[kkk] = jj;

          }   /* end if */

            }  /* end for k */


        for(j=1;j<=2;j++)       {       /* do XOY boundaries & OX lines */
        ii ++;
        E->parallel.NUM_PASS[lev][m].bound[ii] = 1;
        if(E->parallel.me_loc[3]==0 && j==1)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;
        else if(E->parallel.me_loc[3]==nproczl-1 && j==2)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;

        if(E->parallel.NUM_PASS[lev][m].bound[ii] == 1)  {
          kkk ++;
              /* determine the pass ID for ii-th boundary and kkk-th pass */

          /*E->parallel.PROCESSOR[lev][m].pass[kkk]=me-((j==1)?1:-1);*/
	  dir = ( (j==1)? 1 : -1);
          E->parallel.PROCESSOR[lev][m].pass[kkk]=E->parallel.loc2proc_map[cap][lx][ly][lz-dir];

          E->parallel.NUM_NODE[lev][m].pass[kkk] = E->parallel.NUM_NNO[lev][m].bound[ii];

          jj = 0; kf = 0;
          for (kk=1;kk<=E->parallel.NUM_NODE[lev][m].pass[kkk];kk++)   {
            lnode = kk;
            node = E->parallel.NODE[lev][m][lnode].bound[ii];
            E->parallel.EXCHANGE_NODE[lev][m][kk].pass[kkk] = node;
            temp_dims = dims;
                    for(doff=1;doff<=temp_dims;doff++)
                         E->parallel.EXCHANGE_ID[lev][m][++jj].pass[kkk] = E->ID[lev][m][node].doff[doff];
            }  /* end for node k */

              E->parallel.NUM_NEQ[lev][m].pass[kkk] = jj;

          }   /* end if */

            }     /* end for j */


      E->parallel.TNUM_PASS[lev][m] = kkk;


       }     /* end for m  */

      }        /* end for level */

  if(E->control.verbose) {
    for(lev=E->mesh.gridmax;lev>=E->mesh.gridmin;lev--) {
      fprintf(E->fp_out,"output_communication route surface for lev=%d \n",lev);
      for (m=1;m<=E->sphere.caps_per_proc;m++)  {
    fprintf(E->fp_out,"  me= %d cap=%d pass  %d \n",E->parallel.me,E->sphere.capid[m],E->parallel.TNUM_PASS[lev][m]);
    for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)   {
      fprintf(E->fp_out,"proc %d and pass  %d to proc %d with %d eqn and %d node\n",E->parallel.me,k,E->parallel.PROCESSOR[lev][m].pass[k],E->parallel.NUM_NEQ[lev][m].pass[k],E->parallel.NUM_NODE[lev][m].pass[k]);
/*    fprintf(E->fp_out,"Eqn:\n");  */
/*    for (ii=1;ii<=E->parallel.NUM_NEQ[lev][m].pass[k];ii++)  */
/*      fprintf(E->fp_out,"%d %d\n",ii,E->parallel.EXCHANGE_ID[lev][m][ii].pass[k]);  */
/*    fprintf(E->fp_out,"Node:\n");  */
/*    for (ii=1;ii<=E->parallel.NUM_NODE[lev][m].pass[k];ii++)  */
/*      fprintf(E->fp_out,"%d %d\n",ii,E->parallel.EXCHANGE_NODE[lev][m][ii].pass[k]);  */
    }
      }

    }
    fflush(E->fp_out);
  }

  return;
  }

/* ============================================
 determine communication routs for
 exchange info across the boundaries on the surfaces
 assuming fault nodes are in the top row of processors
 ============================================ */

void regional_parallel_communication_routs_s(E)
  struct All_variables *E;
  {

  int i,ii,j,k,l,node,el,elt,lnode,jj,doff;
  int lev,nno,nox,noz,noy,kkk,kk,kf;
  int p,me,m, nprocz;
  int nprocxl,nprocyl,nproczl;
  void parallel_process_termination();
  FILE *fp1,*fp2;

  char output_file[200];
  const int dims=E->mesh.nsd;

  me = E->parallel.me;
  nprocz = E->parallel.nprocz;

  nprocxl = E->parallel.nprocx;
  nprocyl = E->parallel.nprocy;
  nproczl = E->parallel.nprocz;


        /* determine the communications in horizontal direction        */
  for(lev=E->mesh.gridmax;lev>=E->mesh.gridmin;lev--)       {
    nox = E->lmesh.NOX[lev];
    noz = E->lmesh.NOZ[lev];
    noy = E->lmesh.NOY[lev];
    ii = 0;
    kkk = 0;

    for(m=1;m<=E->sphere.caps_per_proc;m++)    {

        for(i=1;i<=2;i++)       {       /* do YOZ boundaries & OY lines */

        ii ++;
        E->parallel.NUM_PASS[lev][m].bound[ii] = 1;
        if(E->parallel.me_loc[1]==0 && i==1)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;
        else if(E->parallel.me_loc[1]==nprocxl-1 && i==2)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;

        for (p=1;p<=E->parallel.NUM_PASS[lev][m].bound[ii];p++)  {
          kkk ++;
              /* determine the pass ID for ii-th boundary and p-th pass */

          E->parallel.sPROCESSOR[lev][m].pass[kkk]=me-((i==1)?1:-1)*nproczl;

              E->parallel.NUM_sNODE[lev][m].pass[kkk] =
                          E->parallel.NUM_NNO[lev][m].bound[ii]/noz;
          for (k=1;k<=E->parallel.NUM_sNODE[lev][m].pass[kkk];k++)   {
            lnode = k;             /* due to lnode increases in horizontal di first */
            node = (E->parallel.NODE[lev][m][lnode].bound[ii]-1)/noz+1;
            E->parallel.EXCHANGE_sNODE[lev][m][k].pass[kkk] = node;
            }  /* end for node k */

          }   /* end for loop p */
            }  /* end for i */

     ii = 2;
          for(k=1;k<=2;k++)        {      /* do XOZ boundaries & OX lines */

        ii ++;
        E->parallel.NUM_PASS[lev][m].bound[ii] = 1;
        if(E->parallel.me_loc[2]==0 && k==1)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;
        else if(E->parallel.me_loc[2]==nprocyl-1 && k==2)
          E->parallel.NUM_PASS[lev][m].bound[ii] = 0;

        for (p=1;p<=E->parallel.NUM_PASS[lev][m].bound[ii];p++)  {

          kkk ++;
              /* determine the pass ID for ii-th boundary and p-th pass */

          E->parallel.sPROCESSOR[lev][m].pass[kkk]=me-((k==1)?1:-1)*nprocxl*nproczl;

              E->parallel.NUM_sNODE[lev][m].pass[kkk] =
                          E->parallel.NUM_NNO[lev][m].bound[ii]/noz;

          for (kk=1;kk<=E->parallel.NUM_sNODE[lev][m].pass[kkk];kk++)   {
            lnode = kk;             /* due to lnode increases in horizontal di first */
            node = (E->parallel.NODE[lev][m][lnode].bound[ii]-1)/noz+1;
            E->parallel.EXCHANGE_sNODE[lev][m][kk].pass[kkk] = node;
            }  /* end for node kk */

          }   /* end for loop p */

            }  /* end for k */


    E->parallel.sTNUM_PASS[lev][m] = kkk;


      }   /* end for m  */

    }   /* end for lev  */


  return;
  }


/* ================================================
WARNING: BUGS AHEAD

   for (m=1;m<=E->sphere.caps_per_proc;m++)    {
     for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {

       sizeofk = (1+E->parallel.NUM_NEQ[lev][m].pass[k])*sizeof(double);
       S[k]=(double *)malloc( sizeofk );
       R[k]=(double *)malloc( sizeofk );
       }
      }

This piece of code contain a bug. Arrays S and R are allocated for each m.
But most of the memory is leaked.

In this version of CitcomS, sphere.caps_per_proc is always equal to one.
So, this bug won't manifest itself. But in other version of CitcomS, it will.

by Tan2 7/21, 2003
================================================ */

void regional_exchange_id_d(E, U, lev)
 struct All_variables *E;
 double **U;
 int lev;
 {

 int ii,j,jj,m,k;
 double *S[27],*R[27];
 int sizeofk;

 MPI_Status status;

 for (m=1;m<=E->sphere.caps_per_proc;m++)    {
   for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {
     sizeofk = (1+E->parallel.NUM_NEQ[lev][m].pass[k])*sizeof(double);
     S[k]=(double *)malloc( sizeofk );
     R[k]=(double *)malloc( sizeofk );
   }
 }

 for (m=1;m<=E->sphere.caps_per_proc;m++)   {
   for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {

     for (j=1;j<=E->parallel.NUM_NEQ[lev][m].pass[k];j++)
       S[k][j-1] = U[m][ E->parallel.EXCHANGE_ID[lev][m][j].pass[k] ];

     MPI_Sendrecv(S[k],E->parallel.NUM_NEQ[lev][m].pass[k],MPI_DOUBLE,
		  E->parallel.PROCESSOR[lev][m].pass[k],1,
		  R[k],E->parallel.NUM_NEQ[lev][m].pass[k],MPI_DOUBLE,
		  E->parallel.PROCESSOR[lev][m].pass[k],1,
		  E->parallel.world,&status);

     for (j=1;j<=E->parallel.NUM_NEQ[lev][m].pass[k];j++)
       U[m][ E->parallel.EXCHANGE_ID[lev][m][j].pass[k] ] += R[k][j-1];

   }           /* for k */
 }     /* for m */         /* finish sending */

 for (m=1;m<=E->sphere.caps_per_proc;m++)
 for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {
   free((void*) S[k]);
   free((void*) R[k]);
 }

 return;
 }


/* ================================================ */
/* ================================================ */
static void exchange_node_d(E, U, lev)
 struct All_variables *E;
 double **U;
 int lev;
 {

 int ii,j,jj,m,k;
 double *S[27],*R[27];
 int sizeofk;

 MPI_Status status;

 for (m=1;m<=E->sphere.caps_per_proc;m++)    {
   for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {
     sizeofk = (1+E->parallel.NUM_NODE[lev][m].pass[k])*sizeof(double);
     S[k]=(double *)malloc( sizeofk );
     R[k]=(double *)malloc( sizeofk );
   }   /* end for k */
 }

 for(m=1;m<=E->sphere.caps_per_proc;m++)     {
   for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)   {

     for (j=1;j<=E->parallel.NUM_NODE[lev][m].pass[k];j++)
       S[k][j-1] = U[m][ E->parallel.EXCHANGE_NODE[lev][m][j].pass[k] ];

     MPI_Sendrecv(S[k],E->parallel.NUM_NODE[lev][m].pass[k],MPI_DOUBLE,
		  E->parallel.PROCESSOR[lev][m].pass[k],1,
		  R[k],E->parallel.NUM_NODE[lev][m].pass[k],MPI_DOUBLE,
		  E->parallel.PROCESSOR[lev][m].pass[k],1,
		  E->parallel.world,&status);

     for (j=1;j<=E->parallel.NUM_NODE[lev][m].pass[k];j++)
       U[m][ E->parallel.EXCHANGE_NODE[lev][m][j].pass[k] ] += R[k][j-1];
   }
 }

 for (m=1;m<=E->sphere.caps_per_proc;m++)
 for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {
   free((void*) S[k]);
   free((void*) R[k]);
 }

 return;
}

/* ================================================ */
/* ================================================ */

static void exchange_node_f(E, U, lev)
 struct All_variables *E;
 float **U;
 int lev;
{

 int ii,j,jj,m,k;
 float *S[27],*R[27];
 int sizeofk;

 MPI_Status status;

 for (m=1;m<=E->sphere.caps_per_proc;m++)    {
   for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {
     sizeofk = (1+E->parallel.NUM_NODE[lev][m].pass[k])*sizeof(float);
     S[k]=(float *)malloc( sizeofk );
     R[k]=(float *)malloc( sizeofk );
   }   /* end for k */
 }


 for (m=1;m<=E->sphere.caps_per_proc;m++)     {
   for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)   {

     for (j=1;j<=E->parallel.NUM_NODE[lev][m].pass[k];j++)
       S[k][j-1] = U[m][ E->parallel.EXCHANGE_NODE[lev][m][j].pass[k] ];

     MPI_Sendrecv(S[k],E->parallel.NUM_NODE[lev][m].pass[k],MPI_FLOAT,
		  E->parallel.PROCESSOR[lev][m].pass[k],1,
		  R[k],E->parallel.NUM_NODE[lev][m].pass[k],MPI_FLOAT,
		  E->parallel.PROCESSOR[lev][m].pass[k],1,
		  E->parallel.world,&status);

     for (j=1;j<=E->parallel.NUM_NODE[lev][m].pass[k];j++)
       U[m][ E->parallel.EXCHANGE_NODE[lev][m][j].pass[k] ] += R[k][j-1];
   }
 }


 for (m=1;m<=E->sphere.caps_per_proc;m++)
 for (k=1;k<=E->parallel.TNUM_PASS[lev][m];k++)  {
   free((void*) S[k]);
   free((void*) R[k]);
 }


 return;
 }
/* ================================================ */
/* ================================================ */

static void exchange_snode_f(E, U1, U2, lev)
 struct All_variables *E;
 float **U1,**U2;
 int lev;
 {

 int ii,j,k,m,kk,t_cap,idb,msginfo[8];
 float *S[27],*R[27];
 int sizeofk;

 MPI_Status status;

 for (m=1;m<=E->sphere.caps_per_proc;m++)    {
   for (k=1;k<=E->parallel.sTNUM_PASS[lev][m];k++)  {
     sizeofk = (1+2*E->parallel.NUM_sNODE[lev][m].pass[k])*sizeof(float);
     S[k]=(float *)malloc( sizeofk );
     R[k]=(float *)malloc( sizeofk );
   }
 }

 for (m=1;m<=E->sphere.caps_per_proc;m++)   {
   for (k=1;k<=E->parallel.sTNUM_PASS[lev][m];k++)  {

     for (j=1;j<=E->parallel.NUM_sNODE[lev][m].pass[k];j++)  {
       S[k][j-1] = U1[m][ E->parallel.EXCHANGE_sNODE[lev][m][j].pass[k] ];
       S[k][j-1+E->parallel.NUM_sNODE[lev][m].pass[k]]
	 = U2[m][ E->parallel.EXCHANGE_sNODE[lev][m][j].pass[k] ];
     }

     MPI_Sendrecv(S[k],2*E->parallel.NUM_sNODE[lev][m].pass[k],MPI_FLOAT,
		  E->parallel.sPROCESSOR[lev][m].pass[k],1,
		  R[k],2*E->parallel.NUM_sNODE[lev][m].pass[k],MPI_FLOAT,
		  E->parallel.sPROCESSOR[lev][m].pass[k],1,
		  E->parallel.world,&status);

     for (j=1;j<=E->parallel.NUM_sNODE[lev][m].pass[k];j++)   {
       U1[m][ E->parallel.EXCHANGE_sNODE[lev][m][j].pass[k] ] += R[k][j-1];
       U2[m][ E->parallel.EXCHANGE_sNODE[lev][m][j].pass[k] ] +=
	 R[k][j-1+E->parallel.NUM_sNODE[lev][m].pass[k]];
     }

   }
 }

 for (m=1;m<=E->sphere.caps_per_proc;m++)
 for (k=1;k<=E->parallel.sTNUM_PASS[lev][m];k++)  {
   free((void*) S[k]);
   free((void*) R[k]);
 }

 return;
 }

back to top