https://github.com/geodynamics/citcoms
Revision bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC, committed by Eh Tan on 09 August 2007, 22:57:28 UTC
Two non-dimensional parameters are added: "dissipation_number" and "gruneisen"
under the Solver component. One can use the original incompressible solver by
setting "gruneisen=0". The code will treat this as "gruneisen=infinity". 
Setting non-zero value to "gruneisen" will switch to compressible solver.

One can use the TALA solver for incompressible case by setting "gruneisen" to
a non-zero value while setting "dissipation_number=0". This is useful when
debugging the compressible solver.

Two implementations are available: one by Wei Leng (U. Colorado) and one by
Eh Tan (CIG). Leng's version uses the original conjugate gradient method for
the Uzawa iteration and moves the contribution of compressibility to the RHS,
similar to the method of Ita and King, JGR, 1994. Tan's version uses the
bi-conjugate gradient stablized method for the Uzawa iteration, similar to the
method of Tan and Gurnis, JGR, 2007. Both versions agree very well. In the
benchmark case, 33x33x33 nodes per cap, Di/gamma=1.0, Ra=1.0, delta function
of load at the mid mantle, the peak velocity differs by only 0.007%. Leng's
version is enabled by default. Edit function solve_Ahat_p_fhat() in
lib/Stokes_flow_Incomp.c to switch to Tan's version.

1 parent 91bcb85
Raw File
Tip revision: bcf06ab870d4cfd4a7c8594146ed51e41b23d5f9 authored by Eh Tan on 09 August 2007, 22:57:28 UTC
Finished the compressible Stokes solver for TALA.
Tip revision: bcf06ab
Regional_read_input_from_files.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 *<LicenseText>
 *
 * CitcomS by Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 * Clint Conrad, Michael Gurnis, and Eun-seo Choi.
 * Copyright (C) 1994-2005, California Institute of Technology.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *</LicenseText>
 *
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
#include <math.h>
#include <sys/types.h>
#include "element_definitions.h"
#include "global_defs.h"

/*=======================================================================
  Calculate ages (MY) for opening input files -> material, ages, velocities
  Open these files, read in results, and average if necessary
=========================================================================*/

void regional_read_input_files_for_timesteps(E,action,output)
    struct All_variables *E;
    int action, output;
{
    float find_age_in_MY();

    FILE *fp1, *fp2;
    float age, newage1, newage2;
    char output_file1[255],output_file2[255];
    float *VB1[4],*VB2[4], inputage1, inputage2;
    int nox,noz,noy,nnn,nox1,noz1,noy1,lev;
    int i,ii,ll,mm,j,k,n,nodeg,nodel,node;
    int intage, pos_age;
    int nodea;
    int nn, el;

    const int dims=E->mesh.nsd;

    int elx,ely,elz,elg,emax;
    float *VIP1,*VIP2;
    int *LL1, *LL2;

    int llayer;
    int layers();

    if( E->parallel.me == 0) fprintf(stderr, "\nINSIDE regional_read_input_files_for_timesteps   action=%d\n",action);

    nox=E->mesh.nox;
    noy=E->mesh.noy;
    noz=E->mesh.noz;
    nox1=E->lmesh.nox;
    noz1=E->lmesh.noz;
    noy1=E->lmesh.noy;
    lev=E->mesh.levmax;

    elx=E->lmesh.elx;
    elz=E->lmesh.elz;
    ely=E->lmesh.ely;

    emax=E->mesh.elx*E->mesh.elz*E->mesh.ely;

    age=find_age_in_MY(E);

    if (age < 0.0) { /* age is negative -> use age=0 for input files */
      intage = 0;
      newage2 = newage1 = 0.0;
      pos_age = 0;
    }
    else {
      intage = age;
      newage1 = 1.0*intage;
      newage2 = 1.0*intage + 1.0;
      pos_age = 1;
    }

    switch (action) { /* set up files to open */

    case 1:  /* read velocity boundary conditions */
      sprintf(output_file1,"%s%0.0f",E->control.velocity_boundary_file,newage1);
      sprintf(output_file2,"%s%0.0f",E->control.velocity_boundary_file,newage2);
      fp1=fopen(output_file1,"r");
	if (fp1 == NULL) {
          fprintf(E->fp,"(Problem_related #4) Cannot open %s\n",output_file1);
          exit(8);
	}
      if (pos_age) {
        fp2=fopen(output_file2,"r");
	 if (fp2 == NULL) {
          fprintf(E->fp,"(Problem_related #5) Cannot open %s\n",output_file2);
          exit(8);
	 }
      }
      if((E->parallel.me==0) && (output==1))   {
         fprintf(E->fp,"Velocity: Starting Age = %g, Elapsed time = %g, Current Age = %g\n",E->control.start_age,E->monitor.elapsed_time,age);
         fprintf(E->fp,"Velocity: File1 = %s\n",output_file1);
        if (pos_age)
           fprintf(E->fp,"Velocity: File2 = %s\n",output_file2);
        else
           fprintf(E->fp,"Velocity: File2 = No file inputted (negative age)\n");
      }
      break;

      case 2:  /* read ages for lithosphere temperature assimilation */
        sprintf(output_file1,"%s%0.0f",E->control.lith_age_file,newage1);
        sprintf(output_file2,"%s%0.0f",E->control.lith_age_file,newage2);
        fp1=fopen(output_file1,"r");
        if (fp1 == NULL) {
          fprintf(E->fp,"(Problem_related #6) Cannot open %s\n",output_file1);
          exit(8);
        }
        if (pos_age) {
          fp2=fopen(output_file2,"r");
          if (fp2 == NULL) {
            fprintf(E->fp,"(Problem_related #7) Cannot open %s\n",output_file2);            exit(8);
          }
        }
        if((E->parallel.me==0) && (output==1))   {
          fprintf(E->fp,"Age: Starting Age = %g, Elapsed time = %g, Current Age = %g\n",E->control.start_age,E->monitor.elapsed_time,age);
          fprintf(E->fp,"Age: File1 = %s\n",output_file1);
          if (pos_age)
            fprintf(E->fp,"Age: File2 = %s\n",output_file2);
          else
            fprintf(E->fp,"Age: File2 = No file inputted (negative age)\n");
        }
        break;

      case 3:  /* read element materials */

        sprintf(output_file1,"%s%0.0f.0",E->control.mat_file,newage1);
        sprintf(output_file2,"%s%0.0f.0",E->control.mat_file,newage2);
        fp1=fopen(output_file1,"r");
        if (fp1 == NULL) {
          fprintf(E->fp,"(Problem_related #8) Cannot open %s\n",output_file1);
          exit(8);
        }
        if (pos_age) {
          fp2=fopen(output_file2,"r");
          if (fp2 == NULL) {
            fprintf(E->fp,"(Problem_related #9) Cannot open %s\n",output_file2);
            exit(8);
          }
        }
        if((E->parallel.me==0) && (output==1))   {
          fprintf(E->fp,"Mat: Starting Age = %g, Elapsed time = %g, Current Age = %g\n",E->control.start_age,E->monitor.elapsed_time,age);
          fprintf(E->fp,"Mat: File1 = %s\n",output_file1);
          if (pos_age)
            fprintf(E->fp,"Mat: File2 = %s\n",output_file2);
          else
            fprintf(E->fp,"Mat: File2 = No file inputted (negative age)\n");
        }

    } /* end switch */



    switch (action) { /* Read the contents of files and average */

    case 1:  /* velocity boundary conditions */
      nnn=nox*noy;
      for(i=1;i<=dims;i++)  {
        VB1[i]=(float*) malloc ((nnn+1)*sizeof(float));
        VB2[i]=(float*) malloc ((nnn+1)*sizeof(float));
      }
      for(i=1;i<=nnn;i++)   {
         fscanf(fp1,"%f %f",&(VB1[1][i]),&(VB1[2][i]));
         VB1[1][i]=E->data.timedir*VB1[1][i];
         VB1[2][i]=E->data.timedir*VB1[2][i];
         if (pos_age) {
             fscanf(fp2,"%f %f",&(VB2[1][i]),&(VB2[2][i]));
             VB2[1][i]=E->data.timedir*VB2[1][i];
             VB2[2][i]=E->data.timedir*VB2[2][i];
         }
      }
      fclose(fp1);
      if (pos_age) fclose(fp2);

      if(E->parallel.me_loc[3]==E->parallel.nprocz-1 )  {
          for(k=1;k<=noy1;k++)
             for(i=1;i<=nox1;i++)    {
                nodeg = E->lmesh.nxs+i-1 + (E->lmesh.nys+k-2)*nox;
                nodel = (k-1)*nox1*noz1 + (i-1)*noz1+noz1;
		if (pos_age) { /* positive ages - we must interpolate */
                    E->sphere.cap[1].VB[1][nodel] = (VB1[1][nodeg] + (VB2[1][nodeg]-VB1[1][nodeg])/(newage2-newage1)*(age-newage1))*E->data.scalev;
                    E->sphere.cap[1].VB[2][nodel] = (VB1[2][nodeg] + (VB2[2][nodeg]-VB1[2][nodeg])/(newage2-newage1)*(age-newage1))*E->data.scalev;
                    E->sphere.cap[1].VB[3][nodel] = 0.0;
		}
		else { /* negative ages - don't do the interpolation */
                    E->sphere.cap[1].VB[1][nodel] = VB1[1][nodeg]*E->data.scalev;
                    E->sphere.cap[1].VB[2][nodel] = VB1[2][nodeg]*E->data.scalev;
                    E->sphere.cap[1].VB[3][nodel] = 0.0;
		}
             }
      }   /* end of E->parallel.me_loc[3]==E->parallel.nprocz-1   */
      for(i=1;i<=dims;i++) {
          free ((void *) VB1[i]);
          free ((void *) VB2[i]);
      }
      break;

      case 2:  /* ages for lithosphere temperature assimilation */
        for(i=1;i<=noy;i++)
          for(j=1;j<=nox;j++) {
            node=j+(i-1)*nox;
            fscanf(fp1,"%f",&inputage1);
            if (pos_age) { /* positive ages - we must interpolate */
              fscanf(fp2,"%f",&inputage2);
              E->age_t[node] = (inputage1 + (inputage2-inputage1)/(newage2-newage1)*(age-newage1))/E->data.scalet;
            }
            else { /* negative ages - don't do the interpolation */
              E->age_t[node] = inputage1;
            }
          }
        fclose(fp1);
        if (pos_age) fclose(fp2);
        break;

      case 3:  /* read element materials */

        VIP1 = (float*) malloc ((emax+1)*sizeof(float));
        VIP2 = (float*) malloc ((emax+1)*sizeof(float));
        LL1 = (int*) malloc ((emax+1)*sizeof(int));
        LL2 = (int*) malloc ((emax+1)*sizeof(int));

        /* probably can be safely removed */
          for (el=1; el<=elx*ely*elz; el++)  {
            nodea = E->ien[1][el].node[2];
            llayer = layers(E,1,nodea);
            if (llayer)  { /* for layers:1-lithosphere,2-upper, 3-trans, and 4-lower mantle */
              E->mat[1][el] = llayer;
            }
          }
          for(i=1;i<=emax;i++)  {
               fscanf(fp1,"%d %d %f", &nn,&(LL1[i]),&(VIP1[i]));
               fscanf(fp2,"%d %d %f", &nn,&(LL2[i]),&(VIP2[i]));
          }

          fclose(fp1);
          fclose(fp2);

          for (k=1;k<=ely;k++)   {
            for (i=1;i<=elx;i++)   {
              for (j=1;j<=elz;j++)  {
                el = j + (i-1)*E->lmesh.elz + (k-1)*E->lmesh.elz*E->lmesh.elx;
                elg = E->lmesh.ezs+j + (E->lmesh.exs+i-1)*E->mesh.elz + (E->lmesh.eys+k-1)*E->mesh.elz*E->mesh.elx;

                E->VIP[1][el] = VIP1[elg]+(VIP2[elg]-VIP1[elg])/(newage2-newage1)*(age-newage1);
                E->mat[1][el] = LL1[elg];

              }     /* end for j  */
            }     /*  end for i */
          }     /*  end for k  */

         free ((void *) VIP1);
         free ((void *) VIP2);
         free ((void *) LL1);
         free ((void *) LL2);

    } /* end switch */

   return;
}
back to top