Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision bd5cb92172fcaeb792dba4b479620ccb3e1a8569 authored by Tom Walker on 07 September 2021, 06:32:17 UTC, committed by Tom Walker on 07 September 2021, 06:32:17 UTC
Added and validated analysis scripts for soil C loss, field soil pools, glasshouse soil variables.
1 parent 84beafa
  • Files
  • Changes
  • 3f1ec20
  • /
  • analysis_code
  • /
  • field_explaining_carbon_loss.R
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:bd5cb92172fcaeb792dba4b479620ccb3e1a8569
directory badge Iframe embedding
swh:1:dir:8cde8fab049c9327f70112a2eecb32b12902291c
content badge Iframe embedding
swh:1:cnt:a0c168a06a385e5885bc65260d7b85ee621f700b

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
field_explaining_carbon_loss.R
################################################################################
#### Project: Lowland plant migrations alpine soil C loss
#### Title:   Contextualising soil C loss
#### Author:  Tom Walker (thomas.walker@usys.ethz.ch)
#### Date:    31 May 2021
#### ---------------------------------------------------------------------------


#### PROLOGUE ------------------------------------------------------------------

## Options ----
# remove objects from global environment
rm(list = ls())
# R session options (no factors, bias against scientific #s)
options(
  stringsAsFactors = F,
  scipen = 6
)

## Libraries ----
# standard library set
library(tidyverse)
library(nlme)
library(emmeans)

## Load data ----
allData <- drake::readd(field_data_subset)
tryData <- drake::readd(trait_data)
ghPlants <- drake::readd(gh_plants)


#### LOWLAND PLANT TRAITS ------------------------------------------------------

## Do PCA on traits ----
# check normality
par(mfrow = c(1, 3))
hist(tryData$leaf_area)
hist(tryData$plant_height)
hist(tryData$seed_mass)
# transform
traits <- tryData %>%
  mutate(logLA = log10(leaf_area),
         logPH = log10(plant_height),
         logSM = log10(seed_mass)) %>%
  select(logPH, logSM, logLA, SLA, leaf_C:leaf_N)
# do PCA
traitPCA <- prcomp(traits, center = T, scale = T)
summary(traitPCA)
# add scores to data
traitScores <- bind_cols(
  select(tryData, accepted_name, is_focal),
  as.data.frame(traitPCA$x[, 1:3])
)

## Model alpine/lowland effects on traits ----
# permanova
adonis2(traits ~ is_focal, tryData, method = "gower")
# trait scores
anova(lm(PC1 ~ is_focal, traitScores))
anova(lm(PC2 ~ is_focal, traitScores))
anova(lm(PC3 ~ is_focal, traitScores))

## Rarefy alpine trait data to test robustness ----
# build data sets
focTraits <- traits %>%
  filter(tryData$is_focal == "yes") %>%
  mutate(type = "focal")
bgdTraits <- traits %>%
  filter(tryData$is_focal == "no") %>%
  apply(2, function(x) rnorm(n = 16, mean = mean(x), sd = sd(x))) %>%
  as.data.frame %>%
  mutate(type = "alpine")
rareTraits <- rbind(focTraits, bgdTraits)
# do permanova
adonis2(select(rareTraits, -type) ~ type, rareTraits, method = "gower")

## Plot ----
# create segments and centroids
cent <- aggregate(cbind(PC1, PC2) ~ is_focal, 
                  data = traitScores, FUN = mean)
segm <- merge(traitScores, setNames(cent, c("is_focal", "oPC1", "oPC2")),
              by = "is_focal", sort = F)
# ggbiplot to get arrow information
arrows <- ggplot_build(
  ggbiplot::ggbiplot(
    traitPCA, 
    groups = traitScores$is_focal, 
    circle = T)
)$data[[2]]

# generate hulls
hulls <- traitScores %>%
  group_by(is_focal) %>%
  slice(chull(PC1, PC2))

# plot biplot
pca_plot <- ggplot(traitScores) +
  theme_bw() + theme(panel.grid = element_blank()) +
  guides(col = "none", fill = "none") +
  scale_color_manual(values = c("#9eacb9", "#dab59e")) +
  scale_fill_manual(values = c("#9eacb9", "#dab59e")) +
  aes(x = PC1, y = PC2, fill = is_focal, col = is_focal) +
  # geom_polygon(data = hulls, alpha = 0.2) +
  geom_segment(data = segm, aes(xend = oPC1, yend = oPC2), size = 0.1) +
  geom_point(shape = 21, size = 0.25) +
  geom_point(data = cent, shape = 21, size = 2.5, fill = "white") +
  geom_segment(data = arrows, aes(x = x, xend = xend, 
                                  y = y, yend = yend, 
                                  colour = NULL, fill = NULL), 
               arrow = arrow(length = unit(0.1, "cm"))) +
  labs(x = "PC2 (33.1% var.)", y = "PC3 (20.1% var.)")




# generate sampled dataset, collate with foc_traits
bgd_sampled <- rbind(foc_traits,
                     apply(bgd_traits, 2, rarefy, n = 16)) %>%
  as.data.frame %>%
  mutate(type = rep(c("foc", "bgd"), each = 16))

# do pca on sampled dataset
samp_pca <- prcomp(bgd_sampled %>% select(-type), scale = T, center = T)
samp_scores <- data.frame(type = bgd_sampled$type, 
                          PC1 = samp_pca$x[, 1],
                          PC2 = samp_pca$x[, 2])

# analysis on these scores
anova(lm(PC1 ~ type, samp_scores))
anova(lm(PC2 ~ type, samp_scores))
adonis2(bgd_sampled %>% select(-type) ~ type, bgd_sampled, method = "gower")



#### SPLIT TRAITS --------------------------------------------------------------

## Do PCA on traits ----
pcaTraits <- prcomp(select(allData$plantsFull, leaf_area:SLA), scale = T, center = T)
summary(pcaTraits)
pcaTraits$rotation

par(mfrow = c(3, 2))
boxplot(pcaTraits$x[, 1] ~ allData$plantsFull$site)
boxplot(pcaTraits$x[, 1] ~ allData$plantsFull$treatment)
boxplot(pcaTraits$x[, 2] ~ allData$plantsFull$site)
boxplot(pcaTraits$x[, 2] ~ allData$plantsFull$treatment)
boxplot(pcaTraits$x[, 3] ~ allData$plantsFull$site)
boxplot(pcaTraits$x[, 3] ~ allData$plantsFull$treatment)

## Background community ----
m1 <- lme(
  fixed = bgPCC2 ~ site * treatment, 
  random = ~ 1 | site_block, 
  method = "ML",
  na.action = "na.exclude",
  data = allData$plantsFull
)
r1 <- residuals(m1, type = "pearson")
par(mfrow = c(1, 3))
plot(r1 ~ fitted(m1))
boxplot(r1 ~ allData$plantsFull$treatment)
hist(r1)
# main effects
m1a <- update(m1, ~.-site:treatment)
anova(m1, m1a)
anova(m1a, update(m1a, ~.- treatment))
# post-hoc
emmeans(m1, pairwise ~ treatment | site)


#### ALPINE PCC ----------------------------------------------------------------

m1 <- lme(Csoil ~ bgPCC1 + bgPCC2, random = ~ site | block, allData$plantsRR, method = "ML")
m2 <- lme(Csoil ~ site*PC3, random = ~ 1 | block, test, method = "ML")
anova(m2)

anova(m1)





## Basic treatment effects ----
# Build model
m1 <- lme(
  Csoil ~ site * bgPCC1 + site * bgPCC2, 
  random = ~ 1 | site_block, 
  data = allData$plantsFull,
  method = "ML"
)



anova(m1)
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API