Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision bd5cb92172fcaeb792dba4b479620ccb3e1a8569 authored by Tom Walker on 07 September 2021, 06:32:17 UTC, committed by Tom Walker on 07 September 2021, 06:32:17 UTC
Added and validated analysis scripts for soil C loss, field soil pools, glasshouse soil variables.
1 parent 84beafa
  • Files
  • Changes
  • 3f1ec20
  • /
  • analysis_code
  • /
  • field_soil_pools.R
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:bd5cb92172fcaeb792dba4b479620ccb3e1a8569
directory badge Iframe embedding
swh:1:dir:8cde8fab049c9327f70112a2eecb32b12902291c
content badge Iframe embedding
swh:1:cnt:b6193c7005b58dfc5e07091fc1984640d871901f

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
field_soil_pools.R
################################################################################
#### Project: Lowland plant migrations alpine soil C loss
#### Title:   Field soil pools analysis
#### Author:  Tom Walker (thomas.walker@usys.ethz.ch)
#### Date:    26 May 2021
#### ---------------------------------------------------------------------------

#### PROLOGUE ------------------------------------------------------------------

## Options ----
# remove objects from global environment
rm(list = ls())
# R session options (no factors, bias against scientific #s)
options(
  stringsAsFactors = F,
  scipen = 6
)

## Libraries ----
# standard library set
library(tidyverse)
library(nlme)
library(emmeans)
library(multcomp)


#### DATA ----------------------------------------------------------------------

## Load from Drake plan ----
soil <- drake::readd(field_data)
fluxes <- drake::readd(flux_data)

## Basic formatting ----
# soil data both sites
soil <- soil %>%
  select(site, treatments, soil_pools) %>% 
  unnest(cols = c(treatments, soil_pools)) %>%
  as.data.frame %>%
  # make site-level blocking factor
  mutate(site_block = tolower(paste0(substr(site, 1, 1), block)))
# subset soil data for detailed microbial measures
soilDeep <- filter(soil, site == "lavey")
# add blocking factor fluxes
fluxes <- fluxes %>%
  mutate(site_block = tolower(paste0(substr(site, 1, 1), block)))


#### ANALYSE -------------------------------------------------------------------

## Ecosystem respiration ----
# build model
m1 <- lme(
  ER ~ treatment * site + Temp.C + Soil.WVC, 
  random = ~ 1 | site_block/date, 
  data = fluxes,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r1 <- residuals(m1, type = "normalized")
par(mfrow = c(1, 3))
plot(r1 ~ fitted(m1))
boxplot(r1 ~ fluxes$treatment)
hist(r1)
# test main effects
m1a <- update(m1, ~.- treatment:site)
anova(m1, m1a)
anova(m1, update(m1a, ~.- treatment))
anova(m1, update(m1a, ~.- site))
# post-hoc
m1reml <- update(m1, method = "REML")
m1areml <- update(m1a, method = "REML")
emmeans(m1reml, pairwise ~ treatment | site)
emmeans(m1areml, pairwise ~ treatment | site)

## Microbial biomass C ----
# build model
m2 <- lme(
  Cmic ~ treatment * site, 
  random = ~ 1 | site_block, 
  data = soil,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r2 <- residuals(m2, type = "normalized")
par(mfrow = c(1, 3))
plot(r2 ~ fitted(m2))
boxplot(r2 ~ soil$treatment)
hist(r2)
# test main effects
m2a <- update(m2, ~.- treatment:site)
anova(m2, m2a)
anova(m2, update(m2a, ~.- treatment))
anova(m2, update(m2a, ~.- site))
# post-hoc
m2areml <- update(m2a, method = "REML")
emmeans(m2areml, pairwise ~ treatment | site)

## Microbial per-gram growth (west Alps only) ----
# build model
m3 <- lme(
  Gm ~ treatment, 
  random = ~ 1 | site_block, 
  data = soilDeep,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r3 <- residuals(m3, type = "normalized")
par(mfrow = c(1, 3))
plot(r3 ~ fitted(m3))
boxplot(r3 ~ soilDeep$treatment)
hist(r3)
# test main effects
anova(m3, update(m3, ~.- treatment))
# post-hoc
m3reml <- update(m3, method = "REML")
emmeans(m3reml, pairwise ~ treatment)

## Microbial per-gram respiration (west Alps only) ----
# build model
m4 <- lme(
  Rm ~ treatment, 
  random = ~ 1 | site_block, 
  data = soilDeep,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r4 <- residuals(m4, type = "normalized")
par(mfrow = c(1, 3))
plot(r4 ~ fitted(m4))
boxplot(r4 ~ soilDeep$treatment)
hist(r4)
# test main effects
anova(m4, update(m4, ~.- treatment))

## Microbial per-capita growth (west Alps only) ----
# build model
m5 <- lme(
  GmM ~ treatment, 
  random = ~ 1 | site_block, 
  data = soilDeep,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r5 <- residuals(m5, type = "normalized")
par(mfrow = c(1, 3))
plot(r5 ~ fitted(m5))
boxplot(r5 ~ soilDeep$treatment)
hist(r5)
# test main effects
anova(m5, update(m5, ~.- treatment))
# post-hoc
m5reml <- update(m5, method = "REML")
emmeans(m5reml, pairwise ~ treatment)
summary(glht(m5reml, mcp(treatment = "Tukey")))

## Microbial per-capita respiration (west Alps only) ----
# build model
m6 <- lme(
  RmM ~ treatment, 
  random = ~ 1 | site_block, 
  data = soilDeep,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r6 <- residuals(m6, type = "normalized")
par(mfrow = c(1, 3))
plot(r6 ~ fitted(m6))
boxplot(r6 ~ soilDeep$treatment)
hist(r6)
# test main effects
anova(m6, update(m6, ~.- treatment))
# post-hoc
m6reml <- update(m6, method = "REML")
emmeans(m6reml, pairwise ~ treatment)
summary(glht(m6reml, mcp(treatment = "Tukey")))

## Microbial CUE (west Alps only) ----
# build model
m7 <- lme(
  CUE ~ treatment, 
  random = ~ 1 | site_block, 
  data = soilDeep,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r7 <- residuals(m7, type = "normalized")
par(mfrow = c(1, 3))
plot(r7 ~ fitted(m7))
boxplot(r7 ~ soilDeep$treatment)
hist(r7)
# test main effects
anova(m7, update(m7, ~.- treatment))
# post-hoc
m7reml <- update(m7, method = "REML")
emmeans(m7reml, pairwise ~ treatment)

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API