Revision bdc080d3acb04ab5f1977c15aa2bda23299e7ea8 authored by Leif Strand on 23 July 2005, 09:02:47 UTC, committed by Leif Strand on 23 July 2005, 09:02:47 UTC
1 parent 5040de8
Raw File
Obsolete.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * 
 *<LicenseText>
 *=====================================================================
 *
 *                              CitcomS
 *                 ---------------------------------
 *
 *                              Authors:
 *           Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 *           Clint Conrad, Michael Gurnis, and Eun-seo Choi
 *          (c) California Institute of Technology 1994-2005
 *
 *        By downloading and/or installing this software you have
 *       agreed to the CitcomS.py-LICENSE bundled with this software.
 *             Free for non-commercial academic research ONLY.
 *      This program is distributed WITHOUT ANY WARRANTY whatsoever.
 *
 *=====================================================================
 *
 *  Copyright June 2005, by the California Institute of Technology.
 *  ALL RIGHTS RESERVED. United States Government Sponsorship Acknowledged.
 * 
 *  Any commercial use must be negotiated with the Office of Technology
 *  Transfer at the California Institute of Technology. This software
 *  may be subject to U.S. export control laws and regulations. By
 *  accepting this software, the user agrees to comply with all
 *  applicable U.S. export laws and regulations, including the
 *  International Traffic and Arms Regulations, 22 C.F.R. 120-130 and
 *  the Export Administration Regulations, 15 C.F.R. 730-744. User has
 *  the responsibility to obtain export licenses, or other export
 *  authority as may be required before exporting such information to
 *  foreign countries or providing access to foreign nationals.  In no
 *  event shall the California Institute of Technology be liable to any
 *  party for direct, indirect, special, incidental or consequential
 *  damages, including lost profits, arising out of the use of this
 *  software and its documentation, even if the California Institute of
 *  Technology has been advised of the possibility of such damage.
 * 
 *  The California Institute of Technology specifically disclaims any
 *  warranties, including the implied warranties or merchantability and
 *  fitness for a particular purpose. The software and documentation
 *  provided hereunder is on an "as is" basis, and the California
 *  Institute of Technology has no obligations to provide maintenance,
 *  support, updates, enhancements or modifications.
 *
 *=====================================================================
 *</LicenseText>
 * 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
/*
  This file contains functions that are no longer used in this version of
  CitcomS. To reduce compilantion time and maintanance effort, these functions
  are removed from its original location to here.
*/



/* ==========================================================  */
/* from Parallel_related.c                                     */
/* =========================================================== */

void parallel_process_initilization(E,argc,argv)
  struct All_variables *E;
  int argc;
  char **argv;
  {

  E->parallel.me = 0;
  E->parallel.nproc = 1;
  E->parallel.me_loc[1] = 0;
  E->parallel.me_loc[2] = 0;
  E->parallel.me_loc[3] = 0;

  /*  MPI_Init(&argc,&argv); moved to main{} in Citcom.c, cpc 12/24/00 */
  MPI_Comm_rank(E->parallel.world, &(E->parallel.me) );
  MPI_Comm_size(E->parallel.world, &(E->parallel.nproc) );

  return;
  }


/* ============================================
 get numerical grid coordinates for each relevant processor
 ============================================ */

void parallel_domain_decomp2(E,GX)
  struct All_variables *E;
  float *GX[4];
  {

  return;
  }


void scatter_to_nlayer_id (E,AUi,AUo,lev)
  struct All_variables *E;
double **AUi,**AUo;
int lev;
{

  int i,j,k,k1,m,node1,node,eqn1,eqn,d;

  const int dims = E->mesh.nsd;

  static double *SD;
  static int been_here=0;
  static int *processors,rootid,nproc,NOZ;

  MPI_Status status;

  if (E->parallel.nprocz==1)  {
    if (E->parallel.me==0) fprintf(stderr,"scatter_to_nlayer should not be called\n");
    return;
  }

  if (been_here==0)   {
    NOZ = E->lmesh.ELZ[lev]*E->parallel.nprocz + 1;

    processors = (int *)malloc((E->parallel.nprocz+2)*sizeof(int));

    SD = (double *)malloc((E->lmesh.NEQ[lev]+2)*sizeof(double));


    rootid = E->parallel.me_sph*E->parallel.nprocz; /* which is the bottom cpu */
    nproc = 0;
    for (j=0;j<E->parallel.nprocz;j++) {
      d = rootid + j;
      processors[nproc] =  d;
      nproc ++;
    }

    been_here++;
  }

  for (m=1;m<=E->sphere.caps_per_proc;m++)   {
    if (E->parallel.me==rootid)
      for (d=0;d<E->parallel.nprocz;d++)  {

        for (k=1;k<=E->lmesh.NOZ[lev];k++)   {
          k1 = k + d*E->lmesh.ELZ[lev];
          for (j=1;j<=E->lmesh.NOY[lev];j++)
            for (i=1;i<=E->lmesh.NOX[lev];i++)   {
              node = k + (i-1)*E->lmesh.NOZ[lev] + (j-1)*E->lmesh.NOZ[lev]*E->lmesh.NOX[lev];
              node1= k1+ (i-1)*NOZ + (j-1)*NOZ*E->lmesh.NOX[lev];
              SD[dims*(node-1)] = AUi[m][dims*(node1-1)];
              SD[dims*(node-1)+1] = AUi[m][dims*(node1-1)+1];
              SD[dims*(node-1)+2] = AUi[m][dims*(node1-1)+2];
	    }
	}

        if (processors[d]!=rootid)  {
	  MPI_Send(SD,E->lmesh.NEQ[lev],MPI_DOUBLE,processors[d],rootid,E->parallel.world);
	}
        else
	  for (i=0;i<=E->lmesh.NEQ[lev];i++)
	    AUo[m][i] = SD[i];
      }
    else
      MPI_Recv(AUo[m],E->lmesh.NEQ[lev],MPI_DOUBLE,rootid,rootid,E->parallel.world,&status);
  }

  return;
}



void gather_to_1layer_id (E,AUi,AUo,lev)
  struct All_variables *E;
double **AUi,**AUo;
int lev;
{

  int i,j,k,k1,m,node1,node,eqn1,eqn,d;

  const int dims = E->mesh.nsd;

  MPI_Status status;

  static double *RV;
  static int been_here=0;
  static int *processors,rootid,nproc,NOZ;

  if (E->parallel.nprocz==1)  {
    if (E->parallel.me==0) fprintf(stderr,"gather_to_1layer should not be called\n");
    return;
  }

  if (been_here==0)   {
    NOZ = E->lmesh.ELZ[lev]*E->parallel.nprocz + 1;

    processors = (int *)malloc((E->parallel.nprocz+2)*sizeof(int));

    RV = (double *)malloc((E->lmesh.NEQ[lev]+2)*sizeof(double));


    rootid = E->parallel.me_sph*E->parallel.nprocz;    /* which is the bottom cpu */
    nproc = 0;
    for (j=0;j<E->parallel.nprocz;j++) {
      d = rootid + j;
      processors[nproc] =  d;
      nproc ++;
    }

    been_here++;
  }

  for (m=1;m<=E->sphere.caps_per_proc;m++)   {
    if (E->parallel.me!=rootid)
      MPI_Send(AUi[m],E->lmesh.NEQ[lev],MPI_DOUBLE,rootid,E->parallel.me,E->parallel.world);
    else
      for (d=0;d<E->parallel.nprocz;d++) {
	if (processors[d]!=rootid)
	  MPI_Recv(RV,E->lmesh.NEQ[lev],MPI_DOUBLE,processors[d],processors[d],E->parallel.world,&status);
	else
	  for (node=0;node<E->lmesh.NEQ[lev];node++)
	    RV[node] = AUi[m][node];

	for (k=1;k<=E->lmesh.NOZ[lev];k++)   {
	  k1 = k + d*E->lmesh.ELZ[lev];
	  for (j=1;j<=E->lmesh.NOY[lev];j++)
	    for (i=1;i<=E->lmesh.NOX[lev];i++)   {
	      node = k + (i-1)*E->lmesh.NOZ[lev] + (j-1)*E->lmesh.NOZ[lev]*E->lmesh.NOX[lev];
	      node1 = k1 + (i-1)*NOZ + (j-1)*NOZ*E->lmesh.NOX[lev];

	      AUo[m][dims*(node1-1)] = RV[dims*(node-1)];
	      AUo[m][dims*(node1-1)+1] = RV[dims*(node-1)+1];
	      AUo[m][dims*(node1-1)+2] = RV[dims*(node-1)+2];
	    }
	}
      }
  }

  return;
}


void gather_to_1layer_node (E,AUi,AUo,lev)
  struct All_variables *E;
float **AUi,**AUo;
int lev;
{

  int i,j,k,k1,m,node1,node,d;

  MPI_Status status;

  static float *RV;
  static int been_here=0;
  static int *processors,rootid,nproc,NOZ,NNO;

  if (E->parallel.nprocz==1)  {
    if (E->parallel.me==0) fprintf(stderr,"gather_to_1layer should not be called\n");
    return;
  }

  if (been_here==0)   {
    NOZ = E->lmesh.ELZ[lev]*E->parallel.nprocz + 1;
    NNO = NOZ*E->lmesh.NOX[lev]*E->lmesh.NOY[lev];

    processors = (int *)malloc((E->parallel.nprocz+2)*sizeof(int));
    RV = (float *)malloc((E->lmesh.NNO[lev]+2)*sizeof(float));


    rootid = E->parallel.me_sph*E->parallel.nprocz; /* which is the bottom cpu */
    nproc = 0;
    for (j=0;j<E->parallel.nprocz;j++) {
      d = rootid + j;
      processors[nproc] =  d;
      nproc ++;
    }

    been_here++;
  }

  for (m=1;m<=E->sphere.caps_per_proc;m++)   {
    if (E->parallel.me!=rootid) {
      MPI_Send(AUi[m],E->lmesh.NNO[lev]+1,MPI_FLOAT,rootid,E->parallel.me,E->parallel.world);
      for (node=1;node<=NNO;node++)
	AUo[m][node] = 1.0;
    }
    else
      for (d=0;d<E->parallel.nprocz;d++) {
	if (processors[d]!=rootid)
	  MPI_Recv(RV,E->lmesh.NNO[lev]+1,MPI_FLOAT,processors[d],processors[d],E->parallel.world,&status);
	else
	  for (node=1;node<=E->lmesh.NNO[lev];node++)
	    RV[node] = AUi[m][node];

	for (k=1;k<=E->lmesh.NOZ[lev];k++)   {
	  k1 = k + d*E->lmesh.ELZ[lev];
	  for (j=1;j<=E->lmesh.NOY[lev];j++)
	    for (i=1;i<=E->lmesh.NOX[lev];i++)   {
	      node = k + (i-1)*E->lmesh.NOZ[lev] + (j-1)*E->lmesh.NOZ[lev]*E->lmesh.NOX[lev];
	      node1 = k1 + (i-1)*NOZ + (j-1)*NOZ*E->lmesh.NOX[lev];
	      AUo[m][node1] = RV[node];
	    }
	}
      }
  }

  return;
}


void gather_to_1layer_ele (E,AUi,AUo,lev)
  struct All_variables *E;
float **AUi,**AUo;
int lev;
{

  int i,j,k,k1,m,e,d,e1;

  MPI_Status status;

  static float *RV;
  static int been_here=0;
  static int *processors,rootid,nproc,NOZ,NNO;

  if (E->parallel.nprocz==1)  {
    if (E->parallel.me==0) fprintf(stderr,"gather_to_1layer should not be called\n");
    return;
  }

  if (been_here==0)   {
    NOZ = E->lmesh.ELZ[lev]*E->parallel.nprocz;
    NNO = NOZ*E->lmesh.ELX[lev]*E->lmesh.ELY[lev];

    processors = (int *)malloc((E->parallel.nprocz+2)*sizeof(int));
    RV = (float *)malloc((E->lmesh.NEL[lev]+2)*sizeof(float));


    rootid = E->parallel.me_sph*E->parallel.nprocz;    /* which is the bottom cpu */
    nproc = 0;
    for (j=0;j<E->parallel.nprocz;j++) {
      d = rootid + j;
      processors[nproc] =  d;
      nproc ++;
    }

    been_here++;
  }

  for (m=1;m<=E->sphere.caps_per_proc;m++)   {
    if (E->parallel.me!=rootid) {
      MPI_Send(AUi[m],E->lmesh.NEL[lev]+1,MPI_FLOAT,rootid,E->parallel.me,E->parallel.world);
      for (e=1;e<=NNO;e++)
	AUo[m][e] = 1.0;
    }
    else
      for (d=0;d<E->parallel.nprocz;d++) {
	if (processors[d]!=rootid)
	  MPI_Recv(RV,E->lmesh.NEL[lev]+1,MPI_FLOAT,processors[d],processors[d],E->parallel.world,&status);
	else
	  for (e=1;e<=E->lmesh.NEL[lev];e++)
	    RV[e] = AUi[m][e];

	for (k=1;k<=E->lmesh.ELZ[lev];k++)   {
	  k1 = k + d*E->lmesh.ELZ[lev];
	  for (j=1;j<=E->lmesh.ELY[lev];j++)
	    for (i=1;i<=E->lmesh.ELX[lev];i++)   {
	      e = k + (i-1)*E->lmesh.ELZ[lev] + (j-1)*E->lmesh.ELZ[lev]*E->lmesh.ELX[lev];
	      e1 = k1 + (i-1)*NOZ + (j-1)*NOZ*E->lmesh.ELX[lev];
	      AUo[m][e1] = RV[e];
	    }
	}
      }
  }

  return;
}


void gather_TG_to_me0(E,TG)
  struct All_variables *E;
float *TG;
{

  int i,j,nsl,idb,to_everyone,from_proc,mst,me;

  static float *RG[20];
  static int been_here=0;
  const float e_16=1.e-16;

  MPI_Status status[100];
  MPI_Status status1;
  MPI_Request request[100];

  if (E->parallel.nprocxy==1)   return;

  nsl = E->sphere.nsf+1;
  me = E->parallel.me;

  if (been_here==0)   {
    been_here++;
    for (i=1;i<E->parallel.nprocxy;i++)
      RG[i] = ( float *)malloc((E->sphere.nsf+1)*sizeof(float));
  }

  idb=0;
  for (i=1;i<=E->parallel.nprocxy;i++)  {
    to_everyone = E->parallel.nprocz*(i-1) + E->parallel.me_loc[3];

    if (me!=to_everyone)    {  /* send TG */
      idb++;
      mst = me;
      MPI_Isend(TG,nsl,MPI_FLOAT,to_everyone,mst,E->parallel.world,&request[idb-1]);
    }
  }

  /* parallel_process_sync(E); */

  idb=0;
  for (i=1;i<=E->parallel.nprocxy;i++)  {
    from_proc = E->parallel.nprocz*(i-1) + E->parallel.me_loc[3];
    if (me!=from_proc)   {    /* me==0 receive all TG and add them up */
      mst = from_proc;
      idb++;
      MPI_Irecv(RG[idb],nsl,MPI_FLOAT,from_proc,mst,E->parallel.world,&request[idb-1]);
    }
  }

  MPI_Waitall(idb,request,status);

  for (i=1;i<E->parallel.nprocxy;i++)
    for (j=1;j<=E->sphere.nsf; j++)  {
      if (fabs(TG[j]) < e_16) TG[j] += RG[i][j];
    }

  /* parallel_process_sync(E); */

  return;
}


void sum_across_depth_sph(E,sphc,sphs,dest_proc)
  struct All_variables *E;
int dest_proc;
float *sphc,*sphs;
{

  int jumpp,i,j,nsl,idb,to_proc,from_proc,mst,me;

  float *RG,*TG;

  MPI_Status status[100];
  MPI_Status status1;
  MPI_Request request[100];

  if (E->parallel.nprocz==1)   return;

  jumpp = E->sphere.hindice;
  nsl = E->sphere.hindice*2+3;
  me = E->parallel.me;

  TG = ( float *)malloc((nsl+1)*sizeof(float));
  if (E->parallel.me_loc[3]==dest_proc)
    RG = ( float *)malloc((nsl+1)*sizeof(float));

  for (i=0;i<E->sphere.hindice;i++)   {
    TG[i] = sphc[i];
    TG[i+jumpp] = sphs[i];
  }


  if (E->parallel.me_loc[3]!=dest_proc)    {  /* send TG */
    to_proc = E->parallel.me_sph*E->parallel.nprocz+E->parallel.nprocz-1;
    mst = me;
    MPI_Send(TG,nsl,MPI_FLOAT,to_proc,mst,E->parallel.world);
  }

  parallel_process_sync(E);

  if (E->parallel.me_loc[3]==dest_proc)  {
    for (i=1;i<E->parallel.nprocz;i++) {
      from_proc = me - i;
      mst = from_proc;
      MPI_Recv(RG,nsl,MPI_FLOAT,from_proc,mst,E->parallel.world,&status1);

      for (j=0;j<E->sphere.hindice;j++)   {
        sphc[j] += RG[j];
        sphs[j] += RG[j+jumpp];
      }
    }
  }

  free((void *) TG);
  if (E->parallel.me_loc[3]==dest_proc)
    free((void *) RG);

  return;
}


void sum_across_surf_sph(E,TG,loc_proc)
  struct All_variables *E;
int loc_proc;
float *TG;
{

  int i,j,nsl,idb,to_everyone,from_proc,mst,me;

  float *RG[20];

  MPI_Status status[100];
  MPI_Status status1;
  MPI_Request request[100];

  if (E->parallel.nprocxy==1)   return;

  nsl = E->sphere.hindice*2+2;
  me = E->parallel.me;

  for (i=1;i<E->parallel.nprocxy;i++)
    RG[i] = ( float *)malloc((nsl+1)*sizeof(float));


  idb=0;
  for (i=1;i<=E->parallel.nprocxy;i++)  {
    to_everyone = E->parallel.nprocz*(i-1) + loc_proc;

    if (me!=to_everyone)    {  /* send TG */
      idb++;
      mst = me;
      MPI_Isend(TG,nsl,MPI_FLOAT,to_everyone,mst,E->parallel.world,&request[idb-1]);
    }
  }

  /* parallel_process_sync(E); */

  idb=0;
  for (i=1;i<=E->parallel.nprocxy;i++)  {
    from_proc = E->parallel.nprocz*(i-1) + loc_proc;
    if (me!=from_proc)   {    /* me==0 receive all TG and add them up */
      mst = from_proc;
      idb++;
      MPI_Irecv(RG[idb],nsl,MPI_FLOAT,from_proc,mst,E->parallel.world,&request[idb-1]);
    }
  }

  MPI_Waitall(idb,request,status);

  for (i=1;i<E->parallel.nprocxy;i++)
    for (j=0;j<nsl; j++)  {
      TG[j] += RG[i][j];
    }

  /* parallel_process_sync(E); */

  for (i=1;i<E->parallel.nprocxy;i++)
    free((void *) RG[i]);

  return;
}


void set_communication_sphereh(E)
  struct All_variables *E;
{
  int i;

  i = cases[E->sphere.caps_per_proc];

  E->parallel.nproc_sph[1] = incases3[i].xy[0];
  E->parallel.nproc_sph[2] = incases3[i].xy[1];

  E->sphere.lelx = E->sphere.elx/E->parallel.nproc_sph[1];
  E->sphere.lely = E->sphere.ely/E->parallel.nproc_sph[2];
  E->sphere.lsnel = E->sphere.lely*E->sphere.lelx;
  E->sphere.lnox = E->sphere.lelx + 1;
  E->sphere.lnoy = E->sphere.lely + 1;
  E->sphere.lnsf = E->sphere.lnox*E->sphere.lnoy;

  for (i=0;i<=E->parallel.nprocz-1;i++)
    if (E->parallel.me_loc[3] == i)    {
      E->parallel.me_sph = (E->parallel.me-i)/E->parallel.nprocz;
      E->parallel.me_loc_sph[1] = E->parallel.me_sph%E->parallel.nproc_sph[1];
      E->parallel.me_loc_sph[2] = E->parallel.me_sph/E->parallel.nproc_sph[1];
    }

  E->sphere.lexs = E->sphere.lelx * E->parallel.me_loc_sph[1];
  E->sphere.leys = E->sphere.lely * E->parallel.me_loc_sph[2];

  return;
}



/* ==========================================================  */
/* from Boundary_conditions.c                                  */
/* =========================================================== */


void renew_top_velocity_boundary(E)
  struct All_variables *E;
{
  int i,k,lev;
  int nox,noz,noy,nodel;
  float fxx10,fxx20,fyy1,fyy2,fxx0,fxx,fyy;
  float vxx1,vxx2,vxx,vvo,vvc;
  float fslope,vslope;
  static float fxx1,fxx2;

  FILE *fp;
  char output_file[255];
  nox=E->lmesh.nox;
  noz=E->lmesh.noz;
  noy=E->lmesh.noy;
  lev=E->mesh.levmax;

  fxx10=1.0;
  fyy1=0.76;
  fxx20=1.0;   /* (fxx1,fyy1), (fxx2,fyy2) the initial coordinates of the trench position */
  fyy2=0.81;

  vxx1=-2.*2.018e0;

  vvo=6.*2.018e0;
  vvc=-2.*2.018e0;     /* vvo--oceanic plate velocity; vvc--continental plate velocity      */

  if(E->advection.timesteps>1)  {
    fxx1=fxx1+E->advection.timestep*vxx1;
    fxx2=fxx2+E->advection.timestep*vxx1;
  }

  else  {
    fxx1=fxx10;
    fxx2=fxx20;
  }

  fprintf(stderr,"%f %f\n",fxx1,fxx2);

  if (E->parallel.me_loc[3] == E->parallel.nprocz-1 ) {
    for(k=1;k<=noy;k++)
      for(i=1;i<=nox;i++)   {
	nodel = (k-1)*nox*noz + (i-1)*noz+noz;
	fyy=E->SX[lev][1][1][nodel];
	if (fyy < fyy1 || fyy >fyy2 )   {
	  E->sphere.cap[1].VB[1][nodel]=0.0;
	  E->sphere.cap[1].VB[2][nodel]=-vvc;
	  E->sphere.cap[1].VB[3][nodel]=0.0;
	}    /* the region outside of the domain bounded by the trench length  */
	else if (fyy>=fyy1 && fyy <=fyy2)  {
	  if (E->SX[lev][1][2][nodel]>=0.00 && E->SX[lev][1][2][nodel]<= fxx1) {
	    E->sphere.cap[1].VB[1][nodel]=0.0;
	    E->sphere.cap[1].VB[2][nodel]=vvo;
	    E->sphere.cap[1].VB[3][nodel]=0.0;
	  }
	  else if ( E->SX[lev][1][2][nodel]>fxx1 && E->SX[lev][1][2][nodel]<fxx2) {
	    E->sphere.cap[1].VB[1][nodel]=0.0;
	    E->sphere.cap[1].VB[2][nodel]=vxx1;
	    E->sphere.cap[1].VB[3][nodel]=0.0;
	  }
	  else if ( E->SX[lev][1][2][nodel]>=fxx2) {
	    E->sphere.cap[1].VB[1][nodel]=0.0;
	    E->sphere.cap[1].VB[2][nodel]=vvc;
	    E->sphere.cap[1].VB[3][nodel]=0.0;
	  }
	}   /* end of else if (fyy>=fyy1 && fyy <=fyy2)  */

      }  /* end if for(i=1;i<nox;i++)  */
  }    /* end of E->parallel.me_loc[3]   */

  return;
}



/* ==========================================================  */
/* from Output.c                                               */
/* =========================================================== */

void output_stress(E,file_number,SXX,SYY,SZZ,SXY,SXZ,SZY)
  struct All_variables *E;
int file_number;
float *SXX,*SYY,*SZZ,*SXY,*SXZ,*SZY;
{
  int i,j,k,ii,m,fd,size2;
  int nox,noz,noy;
  char output_file[255];

  size2= (E->lmesh.nno+1)*sizeof(float);

  sprintf(output_file,"%s.%05d.SZZ",E->control.data_file,file_number);
  fd=open(output_file,O_RDWR | O_CREAT, 0644);
  write(fd,SZZ,size2);
  close (fd);

  return;
}


void print_field_spectral_regular(E,TG,sphc,sphs,proc_loc,filen)
  struct All_variables *E;
float *TG,*sphc,*sphs;
int proc_loc;
char * filen;
{
  FILE *fp,*fp1;
  char output_file[255];
  int i,node,j,ll,mm;
  float minx,maxx,t,f,rad;
  rad = 180.0/M_PI;

  maxx=-1.e26;
  minx=1.e26;
  if (E->parallel.me==proc_loc)  {

    sprintf(output_file,"%s.%s_intp",E->control.data_file,filen);
    fp=fopen(output_file,"w");
    if (fp == NULL) {
      fprintf(E->fp,"(Output.c #7) Cannot open %s\n",output_file);
      exit(8);
    }
    for (i=E->sphere.nox;i>=1;i--)
      for (j=1;j<=E->sphere.noy;j++)  {
        node = i + (j-1)*E->sphere.nox;
        t = 90-E->sphere.sx[1][node]*rad;
        f = E->sphere.sx[2][node]*rad;
        fprintf (fp,"%.3e %.3e %.4e\n",f,t,TG[node]);
        if(TG[node]>maxx)maxx=TG[node];
        if(TG[node]<minx)minx=TG[node];
      }
    fprintf(stderr,"lmaxx=%.4e lminx=%.4e for %s\n",maxx,minx,filen);
    fprintf(E->fp,"lmaxx=%.4e lminx=%.4e for %s\n",maxx,minx,filen);
    fclose(fp);

    sprintf(output_file,"%s.%s_sharm",E->control.data_file,filen);
    fp1=fopen(output_file,"w");
    if (fp1 == NULL) {
      fprintf(E->fp,"(Output.c #8) Cannot open %s\n",output_file);
      exit(8);
    }
    fprintf(fp1,"lmaxx=%.4e lminx=%.4e for %s\n",maxx,minx,filen);
    fprintf(fp1," ll   mm     cos      sin \n");
    for (ll=0;ll<=E->sphere.output_llmax;ll++)
      for(mm=0;mm<=ll;mm++)  {
        i = E->sphere.hindex[ll][mm];
        fprintf(fp1,"%3d %3d %.4e %.4e \n",ll,mm,sphc[i],sphs[i]);
      }

    fclose(fp1);
  }


  return;
}



void output_velo_related(E,file_number)
  struct All_variables *E;
  int file_number;
{
  int el,els,i,j,k,m,node,fd;
  int s,nox,noz,noy,size1,size2,size3;
  char output_file[255];
  FILE *fp1,*fp2;


  output_velo(E);
  output_visc(E);


  if (E->parallel.me_loc[3]==E->parallel.nprocz-1)      {
    sprintf(output_file,"%s.surf.%d.%d",E->control.data_file,E->parallel.me,cycles);
    fp2 = output_open(output_file);

    for(j=1;j<=E->sphere.caps_per_proc;j++)  {
      fprintf(fp2,"%3d %7d\n",j,E->lmesh.nsf);
      for(i=1;i<=E->lmesh.nsf;i++)   {
	s = i*E->lmesh.noz;
        fprintf(fp2,"%.4e %.4e %.4e %.4e\n",E->slice.tpg[j][i],E->slice.shflux[j][i],E->sphere.cap[j].V[1][s],E->sphere.cap[j].V[2][s]);
	}
      }
    fclose(fp2);

    }

  if (E->parallel.me_loc[3]==0)      {
    sprintf(output_file,"%s.botm.%d.%d",E->control.data_file,E->parallel.me,cycles);
    fp2 = output_open(output_file);

    for(j=1;j<=E->sphere.caps_per_proc;j++)  {
      fprintf(fp2,"%3d %7d\n",j,E->lmesh.nsf);
      for(i=1;i<=E->lmesh.nsf;i++)  {
	s = (i-1)*E->lmesh.noz + 1;
        fprintf(fp2,"%.4e %.4e %.4e %.4e\n",E->slice.tpgb[j][i],E->slice.bhflux[j][i],E->sphere.cap[j].V[1][s],E->sphere.cap[j].V[2][s]);
	}
      }
    fclose(fp2);
    }

  /* remove horizontal average output   by Tan2 Mar. 1 2002  */
/*    if (E->parallel.me<E->parallel.nprocz)  { */
/*      sprintf(output_file,"%s.ave_r.%d.%d",E->control.data_file,E->parallel.me,cycles); */
/*      fp2 = output_open(output_file); */
/*  	if (fp2 == NULL) { */
/*            fprintf(E->fp,"(Output.c #6) Cannot open %s\n",output_file); */
/*            exit(8); */
/*  	} */
/*      for(j=1;j<=E->lmesh.noz;j++)  { */
/*          fprintf(fp2,"%.4e %.4e %.4e %.4e\n",E->sx[1][3][j],E->Have.T[j],E->Have.V[1][j],E->Have.V[2][j]); */
/*  	} */
/*      fclose(fp2); */
/*      } */

  return;
  }



void output_temp(E,file_number)
  struct All_variables *E;
  int file_number;
{
  int m,nno,i,j,fd;
  char output_file[255];

  return;
}


void output_visc_prepare(struct All_variables *E, float **VE)
{
  void get_ele_visc();
  void visc_from_ele_to_gint();
  void visc_from_gint_to_nodes();

  float *EV, *VN[NCS];
  const int lev = E->mesh.levmax;
  const int nsd = E->mesh.nsd;
  const int vpts = vpoints[nsd];
  int i, m;


  // Here is a bug in the original code. EV is not allocated for each
  // E->sphere.caps_per_proc. Later, when elemental viscosity is written
  // to it (in get_ele_visc()), viscosity in high cap number will overwrite
  // that in a lower cap number.
  //
  // Since current CitcomS only support 1 cap per processor, this bug won't
  // manifest itself. So, I will leave it here.
  // by Tan2 5/22/2003
  int size2 = (E->lmesh.nel+1)*sizeof(float);
  EV = (float *) malloc (size2);

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    VN[m]=(float *)malloc((1+E->lmesh.nel*vpts)*sizeof(float));
  }

  get_ele_visc(E,EV,1);

  for(i=1;i<=E->lmesh.nel;i++)
    VE[1][i]=EV[i];

  visc_from_ele_to_gint(E, VE, VN, lev);
  visc_from_gint_to_nodes(E, VN, VE, lev);

  free((void *) EV);
  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    free((void *) VN[m]);
  }

  return;
}


void output_visc(struct All_variables *E, int cycles)
{
  int i, j, m;
  char output_file[255];
  FILE *fp1;
  float *VE[NCS];

  sprintf(output_file,"%s.visc.%d.%d",E->control.data_file,E->parallel.me,cycles);
  fp1 = output_open(output_file);

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    VE[m]=(float *)malloc((1+E->lmesh.nno)*sizeof(float));
  }

  output_visc_prepare(E, VE);

  for(j=1;j<=E->sphere.caps_per_proc;j++) {
    fprintf(fp1,"%3d %7d\n",j,E->lmesh.nno);
    for(i=1;i<=E->lmesh.nno;i++)
      fprintf(fp1,"%.3e\n",VE[1][i]);
  }

  for(m=1;m<=E->sphere.caps_per_proc;m++) {
    free((void*) VE[m]);
  }

  fclose(fp1);

  return;
}

/* ==========================================================  */
/* from Process_buoyancy.c                                     */
/* =========================================================== */


void process_temp_field(E,ii)
 struct All_variables *E;
    int ii;
{
    void heat_flux();
    void output_temp();
    void process_output_field();
    int record_h;

/* This form prevented running for timesteps less than 10!!
    record_h = E->control.record_every/10;  */
    record_h = E->control.record_every;

/* changed to allow 0th time step to be outputted CPC 6/18/00 */
/*    if ( ((ii % record_h) == 0) || E->control.DIRECTII)    { */

    if ( (ii == 0) || ((ii % record_h) == 0) || E->control.DIRECTII)    {
      heat_flux(E);
      parallel_process_sync(E);
/*      output_temp(E,ii);  */
    }

/*    if ( ((ii % E->control.record_every) == 0) || E->control.DIRECTII)  { */
    if ( ((ii == 0) || ((ii % E->control.record_every) == 0))
		|| E->control.DIRECTII)     {
       process_output_field(E,ii);
    }

    return;
}


/* ==========================================================  */
/* from Process_velocity.c                                     */
/* =========================================================== */

void process_new_velocity(E,ii)
    struct All_variables *E;
    int ii;
{
    void output_velo_related();
    void get_STD_topo();
    void get_CBF_topo();

    int m,i,it;


    E->monitor.length_scale = E->data.layer_km/E->mesh.layer[2]; /* km */
    E->monitor.time_scale = pow(E->data.layer_km*1000.0,2.0)/   /* Million years */
      (E->data.therm_diff*3600.0*24.0*365.25*1.0e6);

    if ( (ii == 0) || ((ii % E->control.record_every) == 0)
		|| E->control.DIRECTII)     {
      get_STD_topo(E,E->slice.tpg,E->slice.tpgb,E->slice.divg,E->slice.vort,ii);
      parallel_process_sync(E);
      output_velo_related(E,ii);         /* also topo */
    }

    return;
}


void get_surface_velo(E, SV,m)
  struct All_variables *E;
  float *SV;
  int m;
  {

  int el,els,i,node,lev;
  char output_file[255];
  FILE *fp;

  const int dims=E->mesh.nsd;
  const int ends=enodes[dims];
  const int nno=E->lmesh.nno;

  lev = E->mesh.levmax;

  for(m=1;m<=E->sphere.caps_per_proc;m++)
    for (node=1;node<=nno;node++)
      if (node%E->lmesh.noz==0)   {
        i = node/E->lmesh.noz;
        SV[(i-1)*2+1] = E->sphere.cap[m].V[1][node];
        SV[(i-1)*2+2] = E->sphere.cap[m].V[2][node];
      }

  return;
  }



/* ==========================================================  */
/* from Global_operations.c                                    */
/* =========================================================== */

void sum_across_depth_sph1(E,sphc,sphs)
struct All_variables *E;
float *sphc,*sphs;
{
 int jumpp,total,j,d;
 float *sphcs,*temp;

 temp = (float *) malloc((E->sphere.hindice*2+3)*sizeof(float));
 sphcs = (float *) malloc((E->sphere.hindice*2+3)*sizeof(float));

 total = E->sphere.hindice*2+3;
 jumpp = E->sphere.hindice;
 for (j=0;j<E->sphere.hindice;j++)   {
   sphcs[j] = sphc[j];
   sphcs[j+jumpp] = sphs[j];
 }

 MPI_Allreduce(sphcs,temp,total,MPI_FLOAT,MPI_SUM,E->parallel.vertical_comm);

 for (j=0;j<E->sphere.hindice;j++)   {
   sphc[j] = temp[j];
   sphs[j] = temp[j+jumpp];
 }

 MPI_Allreduce(sphcs,temp,total,MPI_FLOAT,MPI_SUM,E->parallel.vertical_comm);

 free((void*) temp);
 free((void*) sphcs);

return;
}


/* ==========================================================  */
/* from                                                        */
/* =========================================================== */

back to top