https://github.com/torvalds/linux
Revision bdc48fa11e46f867ea4d75fa59ee87a7f48be144 authored by Joe Perches on 29 May 2020, 23:12:21 UTC, committed by Linus Torvalds on 31 May 2020, 18:00:42 UTC
Yes, staying withing 80 columns is certainly still _preferred_.  But
it's not the hard limit that the checkpatch warnings imply, and other
concerns can most certainly dominate.

Increase the default limit to 100 characters.  Not because 100
characters is some hard limit either, but that's certainly a "what are
you doing" kind of value and less likely to be about the occasional
slightly longer lines.

Miscellanea:

 - to avoid unnecessary whitespace changes in files, checkpatch will no
   longer emit a warning about line length when scanning files unless
   --strict is also used

 - Add a bit to coding-style about alignment to open parenthesis

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 8fc984a
Raw File
Tip revision: bdc48fa11e46f867ea4d75fa59ee87a7f48be144 authored by Joe Perches on 29 May 2020, 23:12:21 UTC
checkpatch/coding-style: deprecate 80-column warning
Tip revision: bdc48fa
slab_common.c
// SPDX-License-Identifier: GPL-2.0
/*
 * Slab allocator functions that are independent of the allocator strategy
 *
 * (C) 2012 Christoph Lameter <cl@linux.com>
 */
#include <linux/slab.h>

#include <linux/mm.h>
#include <linux/poison.h>
#include <linux/interrupt.h>
#include <linux/memory.h>
#include <linux/cache.h>
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/uaccess.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/debugfs.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <linux/memcontrol.h>

#define CREATE_TRACE_POINTS
#include <trace/events/kmem.h>

#include "slab.h"

enum slab_state slab_state;
LIST_HEAD(slab_caches);
DEFINE_MUTEX(slab_mutex);
struct kmem_cache *kmem_cache;

#ifdef CONFIG_HARDENED_USERCOPY
bool usercopy_fallback __ro_after_init =
		IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
module_param(usercopy_fallback, bool, 0400);
MODULE_PARM_DESC(usercopy_fallback,
		"WARN instead of reject usercopy whitelist violations");
#endif

static LIST_HEAD(slab_caches_to_rcu_destroy);
static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
		    slab_caches_to_rcu_destroy_workfn);

/*
 * Set of flags that will prevent slab merging
 */
#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB | SLAB_KASAN)

#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)

/*
 * Merge control. If this is set then no merging of slab caches will occur.
 */
static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);

static int __init setup_slab_nomerge(char *str)
{
	slab_nomerge = true;
	return 1;
}

#ifdef CONFIG_SLUB
__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
#endif

__setup("slab_nomerge", setup_slab_nomerge);

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->object_size;
}
EXPORT_SYMBOL(kmem_cache_size);

#ifdef CONFIG_DEBUG_VM
static int kmem_cache_sanity_check(const char *name, unsigned int size)
{
	if (!name || in_interrupt() || size < sizeof(void *) ||
		size > KMALLOC_MAX_SIZE) {
		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
		return -EINVAL;
	}

	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	return 0;
}
#else
static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
{
	return 0;
}
#endif

void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		if (s)
			kmem_cache_free(s, p[i]);
		else
			kfree(p[i]);
	}
}

int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
								void **p)
{
	size_t i;

	for (i = 0; i < nr; i++) {
		void *x = p[i] = kmem_cache_alloc(s, flags);
		if (!x) {
			__kmem_cache_free_bulk(s, i, p);
			return 0;
		}
	}
	return i;
}

#ifdef CONFIG_MEMCG_KMEM

LIST_HEAD(slab_root_caches);
static DEFINE_SPINLOCK(memcg_kmem_wq_lock);

static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);

void slab_init_memcg_params(struct kmem_cache *s)
{
	s->memcg_params.root_cache = NULL;
	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
	INIT_LIST_HEAD(&s->memcg_params.children);
	s->memcg_params.dying = false;
}

static int init_memcg_params(struct kmem_cache *s,
			     struct kmem_cache *root_cache)
{
	struct memcg_cache_array *arr;

	if (root_cache) {
		int ret = percpu_ref_init(&s->memcg_params.refcnt,
					  kmemcg_cache_shutdown,
					  0, GFP_KERNEL);
		if (ret)
			return ret;

		s->memcg_params.root_cache = root_cache;
		INIT_LIST_HEAD(&s->memcg_params.children_node);
		INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
		return 0;
	}

	slab_init_memcg_params(s);

	if (!memcg_nr_cache_ids)
		return 0;

	arr = kvzalloc(sizeof(struct memcg_cache_array) +
		       memcg_nr_cache_ids * sizeof(void *),
		       GFP_KERNEL);
	if (!arr)
		return -ENOMEM;

	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
	return 0;
}

static void destroy_memcg_params(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
	} else {
		mem_cgroup_put(s->memcg_params.memcg);
		WRITE_ONCE(s->memcg_params.memcg, NULL);
		percpu_ref_exit(&s->memcg_params.refcnt);
	}
}

static void free_memcg_params(struct rcu_head *rcu)
{
	struct memcg_cache_array *old;

	old = container_of(rcu, struct memcg_cache_array, rcu);
	kvfree(old);
}

static int update_memcg_params(struct kmem_cache *s, int new_array_size)
{
	struct memcg_cache_array *old, *new;

	new = kvzalloc(sizeof(struct memcg_cache_array) +
		       new_array_size * sizeof(void *), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	if (old)
		memcpy(new->entries, old->entries,
		       memcg_nr_cache_ids * sizeof(void *));

	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
	if (old)
		call_rcu(&old->rcu, free_memcg_params);
	return 0;
}

int memcg_update_all_caches(int num_memcgs)
{
	struct kmem_cache *s;
	int ret = 0;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		ret = update_memcg_params(s, num_memcgs);
		/*
		 * Instead of freeing the memory, we'll just leave the caches
		 * up to this point in an updated state.
		 */
		if (ret)
			break;
	}
	mutex_unlock(&slab_mutex);
	return ret;
}

void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
{
	if (is_root_cache(s)) {
		list_add(&s->root_caches_node, &slab_root_caches);
	} else {
		css_get(&memcg->css);
		s->memcg_params.memcg = memcg;
		list_add(&s->memcg_params.children_node,
			 &s->memcg_params.root_cache->memcg_params.children);
		list_add(&s->memcg_params.kmem_caches_node,
			 &s->memcg_params.memcg->kmem_caches);
	}
}

static void memcg_unlink_cache(struct kmem_cache *s)
{
	if (is_root_cache(s)) {
		list_del(&s->root_caches_node);
	} else {
		list_del(&s->memcg_params.children_node);
		list_del(&s->memcg_params.kmem_caches_node);
	}
}
#else
static inline int init_memcg_params(struct kmem_cache *s,
				    struct kmem_cache *root_cache)
{
	return 0;
}

static inline void destroy_memcg_params(struct kmem_cache *s)
{
}

static inline void memcg_unlink_cache(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */

/*
 * Figure out what the alignment of the objects will be given a set of
 * flags, a user specified alignment and the size of the objects.
 */
static unsigned int calculate_alignment(slab_flags_t flags,
		unsigned int align, unsigned int size)
{
	/*
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
	 *
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
	 */
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned int ralign;

		ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}

	if (align < ARCH_SLAB_MINALIGN)
		align = ARCH_SLAB_MINALIGN;

	return ALIGN(align, sizeof(void *));
}

/*
 * Find a mergeable slab cache
 */
int slab_unmergeable(struct kmem_cache *s)
{
	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
		return 1;

	if (!is_root_cache(s))
		return 1;

	if (s->ctor)
		return 1;

	if (s->usersize)
		return 1;

	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

	return 0;
}

struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
		slab_flags_t flags, const char *name, void (*ctor)(void *))
{
	struct kmem_cache *s;

	if (slab_nomerge)
		return NULL;

	if (ctor)
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
	flags = kmem_cache_flags(size, flags, name, NULL);

	if (flags & SLAB_NEVER_MERGE)
		return NULL;

	list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
			continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
		if ((s->size & ~(align - 1)) != s->size)
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		if (IS_ENABLED(CONFIG_SLAB) && align &&
			(align > s->align || s->align % align))
			continue;

		return s;
	}
	return NULL;
}

static struct kmem_cache *create_cache(const char *name,
		unsigned int object_size, unsigned int align,
		slab_flags_t flags, unsigned int useroffset,
		unsigned int usersize, void (*ctor)(void *),
		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
{
	struct kmem_cache *s;
	int err;

	if (WARN_ON(useroffset + usersize > object_size))
		useroffset = usersize = 0;

	err = -ENOMEM;
	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
	if (!s)
		goto out;

	s->name = name;
	s->size = s->object_size = object_size;
	s->align = align;
	s->ctor = ctor;
	s->useroffset = useroffset;
	s->usersize = usersize;

	err = init_memcg_params(s, root_cache);
	if (err)
		goto out_free_cache;

	err = __kmem_cache_create(s, flags);
	if (err)
		goto out_free_cache;

	s->refcount = 1;
	list_add(&s->list, &slab_caches);
	memcg_link_cache(s, memcg);
out:
	if (err)
		return ERR_PTR(err);
	return s;

out_free_cache:
	destroy_memcg_params(s);
	kmem_cache_free(kmem_cache, s);
	goto out;
}

/**
 * kmem_cache_create_usercopy - Create a cache with a region suitable
 * for copying to userspace
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @useroffset: Usercopy region offset
 * @usersize: Usercopy region size
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
struct kmem_cache *
kmem_cache_create_usercopy(const char *name,
		  unsigned int size, unsigned int align,
		  slab_flags_t flags,
		  unsigned int useroffset, unsigned int usersize,
		  void (*ctor)(void *))
{
	struct kmem_cache *s = NULL;
	const char *cache_name;
	int err;

	get_online_cpus();
	get_online_mems();
	memcg_get_cache_ids();

	mutex_lock(&slab_mutex);

	err = kmem_cache_sanity_check(name, size);
	if (err) {
		goto out_unlock;
	}

	/* Refuse requests with allocator specific flags */
	if (flags & ~SLAB_FLAGS_PERMITTED) {
		err = -EINVAL;
		goto out_unlock;
	}

	/*
	 * Some allocators will constraint the set of valid flags to a subset
	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
	 * case, and we'll just provide them with a sanitized version of the
	 * passed flags.
	 */
	flags &= CACHE_CREATE_MASK;

	/* Fail closed on bad usersize of useroffset values. */
	if (WARN_ON(!usersize && useroffset) ||
	    WARN_ON(size < usersize || size - usersize < useroffset))
		usersize = useroffset = 0;

	if (!usersize)
		s = __kmem_cache_alias(name, size, align, flags, ctor);
	if (s)
		goto out_unlock;

	cache_name = kstrdup_const(name, GFP_KERNEL);
	if (!cache_name) {
		err = -ENOMEM;
		goto out_unlock;
	}

	s = create_cache(cache_name, size,
			 calculate_alignment(flags, align, size),
			 flags, useroffset, usersize, ctor, NULL, NULL);
	if (IS_ERR(s)) {
		err = PTR_ERR(s);
		kfree_const(cache_name);
	}

out_unlock:
	mutex_unlock(&slab_mutex);

	memcg_put_cache_ids();
	put_online_mems();
	put_online_cpus();

	if (err) {
		if (flags & SLAB_PANIC)
			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
				name, err);
		else {
			pr_warn("kmem_cache_create(%s) failed with error %d\n",
				name, err);
			dump_stack();
		}
		return NULL;
	}
	return s;
}
EXPORT_SYMBOL(kmem_cache_create_usercopy);

/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Cannot be called within a interrupt, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache.
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 *
 * Return: a pointer to the cache on success, NULL on failure.
 */
struct kmem_cache *
kmem_cache_create(const char *name, unsigned int size, unsigned int align,
		slab_flags_t flags, void (*ctor)(void *))
{
	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
					  ctor);
}
EXPORT_SYMBOL(kmem_cache_create);

static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
{
	LIST_HEAD(to_destroy);
	struct kmem_cache *s, *s2;

	/*
	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
	 * through RCU and and the associated kmem_cache are dereferenced
	 * while freeing the pages, so the kmem_caches should be freed only
	 * after the pending RCU operations are finished.  As rcu_barrier()
	 * is a pretty slow operation, we batch all pending destructions
	 * asynchronously.
	 */
	mutex_lock(&slab_mutex);
	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
	mutex_unlock(&slab_mutex);

	if (list_empty(&to_destroy))
		return;

	rcu_barrier();

	list_for_each_entry_safe(s, s2, &to_destroy, list) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}
}

static int shutdown_cache(struct kmem_cache *s)
{
	/* free asan quarantined objects */
	kasan_cache_shutdown(s);

	if (__kmem_cache_shutdown(s) != 0)
		return -EBUSY;

	memcg_unlink_cache(s);
	list_del(&s->list);

	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
#endif
		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
		schedule_work(&slab_caches_to_rcu_destroy_work);
	} else {
#ifdef SLAB_SUPPORTS_SYSFS
		sysfs_slab_unlink(s);
		sysfs_slab_release(s);
#else
		slab_kmem_cache_release(s);
#endif
	}

	return 0;
}

#ifdef CONFIG_MEMCG_KMEM
/*
 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 * @memcg: The memory cgroup the new cache is for.
 * @root_cache: The parent of the new cache.
 *
 * This function attempts to create a kmem cache that will serve allocation
 * requests going from @memcg to @root_cache. The new cache inherits properties
 * from its parent.
 */
void memcg_create_kmem_cache(struct mem_cgroup *memcg,
			     struct kmem_cache *root_cache)
{
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
	struct cgroup_subsys_state *css = &memcg->css;
	struct memcg_cache_array *arr;
	struct kmem_cache *s = NULL;
	char *cache_name;
	int idx;

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	/*
	 * The memory cgroup could have been offlined while the cache
	 * creation work was pending.
	 */
	if (memcg->kmem_state != KMEM_ONLINE)
		goto out_unlock;

	idx = memcg_cache_id(memcg);
	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (arr->entries[idx])
		goto out_unlock;

	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
	cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
			       css->serial_nr, memcg_name_buf);
	if (!cache_name)
		goto out_unlock;

	s = create_cache(cache_name, root_cache->object_size,
			 root_cache->align,
			 root_cache->flags & CACHE_CREATE_MASK,
			 root_cache->useroffset, root_cache->usersize,
			 root_cache->ctor, memcg, root_cache);
	/*
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
	 */
	if (IS_ERR(s)) {
		kfree(cache_name);
		goto out_unlock;
	}

	/*
	 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
	 */
	smp_wmb();
	arr->entries[idx] = s;

out_unlock:
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

static void kmemcg_workfn(struct work_struct *work)
{
	struct kmem_cache *s = container_of(work, struct kmem_cache,
					    memcg_params.work);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
	s->memcg_params.work_fn(s);
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

static void kmemcg_rcufn(struct rcu_head *head)
{
	struct kmem_cache *s = container_of(head, struct kmem_cache,
					    memcg_params.rcu_head);

	/*
	 * We need to grab blocking locks.  Bounce to ->work.  The
	 * work item shares the space with the RCU head and can't be
	 * initialized earlier.
	 */
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
}

static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
{
	WARN_ON(shutdown_cache(s));
}

static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
{
	struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
					    memcg_params.refcnt);
	unsigned long flags;

	spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
	if (s->memcg_params.root_cache->memcg_params.dying)
		goto unlock;

	s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
	INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
	queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);

unlock:
	spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
}

static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
{
	__kmemcg_cache_deactivate_after_rcu(s);
	percpu_ref_kill(&s->memcg_params.refcnt);
}

static void kmemcg_cache_deactivate(struct kmem_cache *s)
{
	if (WARN_ON_ONCE(is_root_cache(s)))
		return;

	__kmemcg_cache_deactivate(s);
	s->flags |= SLAB_DEACTIVATED;

	/*
	 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
	 * flag and make sure that no new kmem_cache deactivation tasks
	 * are queued (see flush_memcg_workqueue() ).
	 */
	spin_lock_irq(&memcg_kmem_wq_lock);
	if (s->memcg_params.root_cache->memcg_params.dying)
		goto unlock;

	s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
	call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
unlock:
	spin_unlock_irq(&memcg_kmem_wq_lock);
}

void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	int idx;
	struct memcg_cache_array *arr;
	struct kmem_cache *s, *c;
	unsigned int nr_reparented;

	idx = memcg_cache_id(memcg);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
						lockdep_is_held(&slab_mutex));
		c = arr->entries[idx];
		if (!c)
			continue;

		kmemcg_cache_deactivate(c);
		arr->entries[idx] = NULL;
	}
	nr_reparented = 0;
	list_for_each_entry(s, &memcg->kmem_caches,
			    memcg_params.kmem_caches_node) {
		WRITE_ONCE(s->memcg_params.memcg, parent);
		css_put(&memcg->css);
		nr_reparented++;
	}
	if (nr_reparented) {
		list_splice_init(&memcg->kmem_caches,
				 &parent->kmem_caches);
		css_get_many(&parent->css, nr_reparented);
	}
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}

static int shutdown_memcg_caches(struct kmem_cache *s)
{
	struct memcg_cache_array *arr;
	struct kmem_cache *c, *c2;
	LIST_HEAD(busy);
	int i;

	BUG_ON(!is_root_cache(s));

	/*
	 * First, shutdown active caches, i.e. caches that belong to online
	 * memory cgroups.
	 */
	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
					lockdep_is_held(&slab_mutex));
	for_each_memcg_cache_index(i) {
		c = arr->entries[i];
		if (!c)
			continue;
		if (shutdown_cache(c))
			/*
			 * The cache still has objects. Move it to a temporary
			 * list so as not to try to destroy it for a second
			 * time while iterating over inactive caches below.
			 */
			list_move(&c->memcg_params.children_node, &busy);
		else
			/*
			 * The cache is empty and will be destroyed soon. Clear
			 * the pointer to it in the memcg_caches array so that
			 * it will never be accessed even if the root cache
			 * stays alive.
			 */
			arr->entries[i] = NULL;
	}

	/*
	 * Second, shutdown all caches left from memory cgroups that are now
	 * offline.
	 */
	list_for_each_entry_safe(c, c2, &s->memcg_params.children,
				 memcg_params.children_node)
		shutdown_cache(c);

	list_splice(&busy, &s->memcg_params.children);

	/*
	 * A cache being destroyed must be empty. In particular, this means
	 * that all per memcg caches attached to it must be empty too.
	 */
	if (!list_empty(&s->memcg_params.children))
		return -EBUSY;
	return 0;
}

static void flush_memcg_workqueue(struct kmem_cache *s)
{
	spin_lock_irq(&memcg_kmem_wq_lock);
	s->memcg_params.dying = true;
	spin_unlock_irq(&memcg_kmem_wq_lock);

	/*
	 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
	 * sure all registered rcu callbacks have been invoked.
	 */
	rcu_barrier();

	/*
	 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
	 * deactivates the memcg kmem_caches through workqueue. Make sure all
	 * previous workitems on workqueue are processed.
	 */
	if (likely(memcg_kmem_cache_wq))
		flush_workqueue(memcg_kmem_cache_wq);

	/*
	 * If we're racing with children kmem_cache deactivation, it might
	 * take another rcu grace period to complete their destruction.
	 * At this moment the corresponding percpu_ref_kill() call should be
	 * done, but it might take another rcu grace period to complete
	 * switching to the atomic mode.
	 * Please, note that we check without grabbing the slab_mutex. It's safe
	 * because at this moment the children list can't grow.
	 */
	if (!list_empty(&s->memcg_params.children))
		rcu_barrier();
}
#else
static inline int shutdown_memcg_caches(struct kmem_cache *s)
{
	return 0;
}

static inline void flush_memcg_workqueue(struct kmem_cache *s)
{
}
#endif /* CONFIG_MEMCG_KMEM */

void slab_kmem_cache_release(struct kmem_cache *s)
{
	__kmem_cache_release(s);
	destroy_memcg_params(s);
	kfree_const(s->name);
	kmem_cache_free(kmem_cache, s);
}

void kmem_cache_destroy(struct kmem_cache *s)
{
	int err;

	if (unlikely(!s))
		return;

	flush_memcg_workqueue(s);

	get_online_cpus();
	get_online_mems();

	mutex_lock(&slab_mutex);

	s->refcount--;
	if (s->refcount)
		goto out_unlock;

	err = shutdown_memcg_caches(s);
	if (!err)
		err = shutdown_cache(s);

	if (err) {
		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
		       s->name);
		dump_stack();
	}
out_unlock:
	mutex_unlock(&slab_mutex);

	put_online_mems();
	put_online_cpus();
}
EXPORT_SYMBOL(kmem_cache_destroy);

/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 *
 * Return: %0 if all slabs were released, non-zero otherwise
 */
int kmem_cache_shrink(struct kmem_cache *cachep)
{
	int ret;

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(cachep);
	ret = __kmem_cache_shrink(cachep);
	put_online_mems();
	put_online_cpus();
	return ret;
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
 * @s: The cache pointer
 */
void kmem_cache_shrink_all(struct kmem_cache *s)
{
	struct kmem_cache *c;

	if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
		kmem_cache_shrink(s);
		return;
	}

	get_online_cpus();
	get_online_mems();
	kasan_cache_shrink(s);
	__kmem_cache_shrink(s);

	/*
	 * We have to take the slab_mutex to protect from the memcg list
	 * modification.
	 */
	mutex_lock(&slab_mutex);
	for_each_memcg_cache(c, s) {
		/*
		 * Don't need to shrink deactivated memcg caches.
		 */
		if (s->flags & SLAB_DEACTIVATED)
			continue;
		kasan_cache_shrink(c);
		__kmem_cache_shrink(c);
	}
	mutex_unlock(&slab_mutex);
	put_online_mems();
	put_online_cpus();
}

bool slab_is_available(void)
{
	return slab_state >= UP;
}

#ifndef CONFIG_SLOB
/* Create a cache during boot when no slab services are available yet */
void __init create_boot_cache(struct kmem_cache *s, const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
{
	int err;
	unsigned int align = ARCH_KMALLOC_MINALIGN;

	s->name = name;
	s->size = s->object_size = size;

	/*
	 * For power of two sizes, guarantee natural alignment for kmalloc
	 * caches, regardless of SL*B debugging options.
	 */
	if (is_power_of_2(size))
		align = max(align, size);
	s->align = calculate_alignment(flags, align, size);

	s->useroffset = useroffset;
	s->usersize = usersize;

	slab_init_memcg_params(s);

	err = __kmem_cache_create(s, flags);

	if (err)
		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
					name, size, err);

	s->refcount = -1;	/* Exempt from merging for now */
}

struct kmem_cache *__init create_kmalloc_cache(const char *name,
		unsigned int size, slab_flags_t flags,
		unsigned int useroffset, unsigned int usersize)
{
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);

	if (!s)
		panic("Out of memory when creating slab %s\n", name);

	create_boot_cache(s, name, size, flags, useroffset, usersize);
	list_add(&s->list, &slab_caches);
	memcg_link_cache(s, NULL);
	s->refcount = 1;
	return s;
}

struct kmem_cache *
kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
EXPORT_SYMBOL(kmalloc_caches);

/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static u8 size_index[24] __ro_after_init = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

static inline unsigned int size_index_elem(unsigned int bytes)
{
	return (bytes - 1) / 8;
}

/*
 * Find the kmem_cache structure that serves a given size of
 * allocation
 */
struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
{
	unsigned int index;

	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;

		index = size_index[size_index_elem(size)];
	} else {
		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
			return NULL;
		index = fls(size - 1);
	}

	return kmalloc_caches[kmalloc_type(flags)][index];
}

#ifdef CONFIG_ZONE_DMA
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.name[KMALLOC_DMA]     = "dma-kmalloc-" #__short_size,	\
	.size = __size,						\
}
#else
#define INIT_KMALLOC_INFO(__size, __short_size)			\
{								\
	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size,	\
	.size = __size,						\
}
#endif

/*
 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 * kmalloc-67108864.
 */
const struct kmalloc_info_struct kmalloc_info[] __initconst = {
	INIT_KMALLOC_INFO(0, 0),
	INIT_KMALLOC_INFO(96, 96),
	INIT_KMALLOC_INFO(192, 192),
	INIT_KMALLOC_INFO(8, 8),
	INIT_KMALLOC_INFO(16, 16),
	INIT_KMALLOC_INFO(32, 32),
	INIT_KMALLOC_INFO(64, 64),
	INIT_KMALLOC_INFO(128, 128),
	INIT_KMALLOC_INFO(256, 256),
	INIT_KMALLOC_INFO(512, 512),
	INIT_KMALLOC_INFO(1024, 1k),
	INIT_KMALLOC_INFO(2048, 2k),
	INIT_KMALLOC_INFO(4096, 4k),
	INIT_KMALLOC_INFO(8192, 8k),
	INIT_KMALLOC_INFO(16384, 16k),
	INIT_KMALLOC_INFO(32768, 32k),
	INIT_KMALLOC_INFO(65536, 64k),
	INIT_KMALLOC_INFO(131072, 128k),
	INIT_KMALLOC_INFO(262144, 256k),
	INIT_KMALLOC_INFO(524288, 512k),
	INIT_KMALLOC_INFO(1048576, 1M),
	INIT_KMALLOC_INFO(2097152, 2M),
	INIT_KMALLOC_INFO(4194304, 4M),
	INIT_KMALLOC_INFO(8388608, 8M),
	INIT_KMALLOC_INFO(16777216, 16M),
	INIT_KMALLOC_INFO(33554432, 32M),
	INIT_KMALLOC_INFO(67108864, 64M)
};

/*
 * Patch up the size_index table if we have strange large alignment
 * requirements for the kmalloc array. This is only the case for
 * MIPS it seems. The standard arches will not generate any code here.
 *
 * Largest permitted alignment is 256 bytes due to the way we
 * handle the index determination for the smaller caches.
 *
 * Make sure that nothing crazy happens if someone starts tinkering
 * around with ARCH_KMALLOC_MINALIGN
 */
void __init setup_kmalloc_cache_index_table(void)
{
	unsigned int i;

	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		unsigned int elem = size_index_elem(i);

		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}

	if (KMALLOC_MIN_SIZE >= 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;

	}

	if (KMALLOC_MIN_SIZE >= 128) {
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
			size_index[size_index_elem(i)] = 8;
	}
}

static void __init
new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
{
	if (type == KMALLOC_RECLAIM)
		flags |= SLAB_RECLAIM_ACCOUNT;

	kmalloc_caches[type][idx] = create_kmalloc_cache(
					kmalloc_info[idx].name[type],
					kmalloc_info[idx].size, flags, 0,
					kmalloc_info[idx].size);
}

/*
 * Create the kmalloc array. Some of the regular kmalloc arrays
 * may already have been created because they were needed to
 * enable allocations for slab creation.
 */
void __init create_kmalloc_caches(slab_flags_t flags)
{
	int i;
	enum kmalloc_cache_type type;

	for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
			if (!kmalloc_caches[type][i])
				new_kmalloc_cache(i, type, flags);

			/*
			 * Caches that are not of the two-to-the-power-of size.
			 * These have to be created immediately after the
			 * earlier power of two caches
			 */
			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
					!kmalloc_caches[type][1])
				new_kmalloc_cache(1, type, flags);
			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
					!kmalloc_caches[type][2])
				new_kmalloc_cache(2, type, flags);
		}
	}

	/* Kmalloc array is now usable */
	slab_state = UP;

#ifdef CONFIG_ZONE_DMA
	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
		struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];

		if (s) {
			kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
				kmalloc_info[i].name[KMALLOC_DMA],
				kmalloc_info[i].size,
				SLAB_CACHE_DMA | flags, 0, 0);
		}
	}
#endif
}
#endif /* !CONFIG_SLOB */

/*
 * To avoid unnecessary overhead, we pass through large allocation requests
 * directly to the page allocator. We use __GFP_COMP, because we will need to
 * know the allocation order to free the pages properly in kfree.
 */
void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = NULL;
	struct page *page;

	flags |= __GFP_COMP;
	page = alloc_pages(flags, order);
	if (likely(page)) {
		ret = page_address(page);
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
	ret = kasan_kmalloc_large(ret, size, flags);
	/* As ret might get tagged, call kmemleak hook after KASAN. */
	kmemleak_alloc(ret, size, 1, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order);

#ifdef CONFIG_TRACING
void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
{
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
}
EXPORT_SYMBOL(kmalloc_order_trace);
#endif

#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Randomize a generic freelist */
static void freelist_randomize(struct rnd_state *state, unsigned int *list,
			       unsigned int count)
{
	unsigned int rand;
	unsigned int i;

	for (i = 0; i < count; i++)
		list[i] = i;

	/* Fisher-Yates shuffle */
	for (i = count - 1; i > 0; i--) {
		rand = prandom_u32_state(state);
		rand %= (i + 1);
		swap(list[i], list[rand]);
	}
}

/* Create a random sequence per cache */
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
				    gfp_t gfp)
{
	struct rnd_state state;

	if (count < 2 || cachep->random_seq)
		return 0;

	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
	if (!cachep->random_seq)
		return -ENOMEM;

	/* Get best entropy at this stage of boot */
	prandom_seed_state(&state, get_random_long());

	freelist_randomize(&state, cachep->random_seq, count);
	return 0;
}

/* Destroy the per-cache random freelist sequence */
void cache_random_seq_destroy(struct kmem_cache *cachep)
{
	kfree(cachep->random_seq);
	cachep->random_seq = NULL;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
#ifdef CONFIG_SLAB
#define SLABINFO_RIGHTS (0600)
#else
#define SLABINFO_RIGHTS (0400)
#endif

static void print_slabinfo_header(struct seq_file *m)
{
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
#else
	seq_puts(m, "slabinfo - version: 2.1\n");
#endif
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
#ifdef CONFIG_DEBUG_SLAB
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
#endif
	seq_putc(m, '\n');
}

void *slab_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&slab_mutex);
	return seq_list_start(&slab_root_caches, *pos);
}

void *slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_root_caches, pos);
}

void slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

static void
memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
{
	struct kmem_cache *c;
	struct slabinfo sinfo;

	if (!is_root_cache(s))
		return;

	for_each_memcg_cache(c, s) {
		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(c, &sinfo);

		info->active_slabs += sinfo.active_slabs;
		info->num_slabs += sinfo.num_slabs;
		info->shared_avail += sinfo.shared_avail;
		info->active_objs += sinfo.active_objs;
		info->num_objs += sinfo.num_objs;
	}
}

static void cache_show(struct kmem_cache *s, struct seq_file *m)
{
	struct slabinfo sinfo;

	memset(&sinfo, 0, sizeof(sinfo));
	get_slabinfo(s, &sinfo);

	memcg_accumulate_slabinfo(s, &sinfo);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
		   sinfo.objects_per_slab, (1 << sinfo.cache_order));

	seq_printf(m, " : tunables %4u %4u %4u",
		   sinfo.limit, sinfo.batchcount, sinfo.shared);
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
	slabinfo_show_stats(m, s);
	seq_putc(m, '\n');
}

static int slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);

	if (p == slab_root_caches.next)
		print_slabinfo_header(m);
	cache_show(s, m);
	return 0;
}

void dump_unreclaimable_slab(void)
{
	struct kmem_cache *s, *s2;
	struct slabinfo sinfo;

	/*
	 * Here acquiring slab_mutex is risky since we don't prefer to get
	 * sleep in oom path. But, without mutex hold, it may introduce a
	 * risk of crash.
	 * Use mutex_trylock to protect the list traverse, dump nothing
	 * without acquiring the mutex.
	 */
	if (!mutex_trylock(&slab_mutex)) {
		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
		return;
	}

	pr_info("Unreclaimable slab info:\n");
	pr_info("Name                      Used          Total\n");

	list_for_each_entry_safe(s, s2, &slab_caches, list) {
		if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
			continue;

		get_slabinfo(s, &sinfo);

		if (sinfo.num_objs > 0)
			pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
				(sinfo.active_objs * s->size) / 1024,
				(sinfo.num_objs * s->size) / 1024);
	}
	mutex_unlock(&slab_mutex);
}

#if defined(CONFIG_MEMCG_KMEM)
void *memcg_slab_start(struct seq_file *m, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	mutex_lock(&slab_mutex);
	return seq_list_start(&memcg->kmem_caches, *pos);
}

void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	return seq_list_next(p, &memcg->kmem_caches, pos);
}

void memcg_slab_stop(struct seq_file *m, void *p)
{
	mutex_unlock(&slab_mutex);
}

int memcg_slab_show(struct seq_file *m, void *p)
{
	struct kmem_cache *s = list_entry(p, struct kmem_cache,
					  memcg_params.kmem_caches_node);
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	if (p == memcg->kmem_caches.next)
		print_slabinfo_header(m);
	cache_show(s, m);
	return 0;
}
#endif

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */
static const struct seq_operations slabinfo_op = {
	.start = slab_start,
	.next = slab_next,
	.stop = slab_stop,
	.show = slab_show,
};

static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct proc_ops slabinfo_proc_ops = {
	.proc_flags	= PROC_ENTRY_PERMANENT,
	.proc_open	= slabinfo_open,
	.proc_read	= seq_read,
	.proc_write	= slabinfo_write,
	.proc_lseek	= seq_lseek,
	.proc_release	= seq_release,
};

static int __init slab_proc_init(void)
{
	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
	return 0;
}
module_init(slab_proc_init);

#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
/*
 * Display information about kmem caches that have child memcg caches.
 */
static int memcg_slabinfo_show(struct seq_file *m, void *unused)
{
	struct kmem_cache *s, *c;
	struct slabinfo sinfo;

	mutex_lock(&slab_mutex);
	seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
	seq_puts(m, " <active_slabs> <num_slabs>\n");
	list_for_each_entry(s, &slab_root_caches, root_caches_node) {
		/*
		 * Skip kmem caches that don't have any memcg children.
		 */
		if (list_empty(&s->memcg_params.children))
			continue;

		memset(&sinfo, 0, sizeof(sinfo));
		get_slabinfo(s, &sinfo);
		seq_printf(m, "%-17s root       %6lu %6lu %6lu %6lu\n",
			   cache_name(s), sinfo.active_objs, sinfo.num_objs,
			   sinfo.active_slabs, sinfo.num_slabs);

		for_each_memcg_cache(c, s) {
			struct cgroup_subsys_state *css;
			char *status = "";

			css = &c->memcg_params.memcg->css;
			if (!(css->flags & CSS_ONLINE))
				status = ":dead";
			else if (c->flags & SLAB_DEACTIVATED)
				status = ":deact";

			memset(&sinfo, 0, sizeof(sinfo));
			get_slabinfo(c, &sinfo);
			seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
				   cache_name(c), css->id, status,
				   sinfo.active_objs, sinfo.num_objs,
				   sinfo.active_slabs, sinfo.num_slabs);
		}
	}
	mutex_unlock(&slab_mutex);
	return 0;
}
DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);

static int __init memcg_slabinfo_init(void)
{
	debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
			    NULL, NULL, &memcg_slabinfo_fops);
	return 0;
}

late_initcall(memcg_slabinfo_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */

static __always_inline void *__do_krealloc(const void *p, size_t new_size,
					   gfp_t flags)
{
	void *ret;
	size_t ks = 0;

	if (p)
		ks = ksize(p);

	if (ks >= new_size) {
		p = kasan_krealloc((void *)p, new_size, flags);
		return (void *)p;
	}

	ret = kmalloc_track_caller(new_size, flags);
	if (ret && p)
		memcpy(ret, p, ks);

	return ret;
}

/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 *
 * Return: pointer to the allocated memory or %NULL in case of error
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	void *ret;

	if (unlikely(!new_size)) {
		kfree(p);
		return ZERO_SIZE_PTR;
	}

	ret = __do_krealloc(p, new_size, flags);
	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
		kfree(p);

	return ret;
}
EXPORT_SYMBOL(krealloc);

/**
 * kzfree - like kfree but zero memory
 * @p: object to free memory of
 *
 * The memory of the object @p points to is zeroed before freed.
 * If @p is %NULL, kzfree() does nothing.
 *
 * Note: this function zeroes the whole allocated buffer which can be a good
 * deal bigger than the requested buffer size passed to kmalloc(). So be
 * careful when using this function in performance sensitive code.
 */
void kzfree(const void *p)
{
	size_t ks;
	void *mem = (void *)p;

	if (unlikely(ZERO_OR_NULL_PTR(mem)))
		return;
	ks = ksize(mem);
	memset(mem, 0, ks);
	kfree(mem);
}
EXPORT_SYMBOL(kzfree);

/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 *
 * Return: size of the actual memory used by @objp in bytes
 */
size_t ksize(const void *objp)
{
	size_t size;

	if (WARN_ON_ONCE(!objp))
		return 0;
	/*
	 * We need to check that the pointed to object is valid, and only then
	 * unpoison the shadow memory below. We use __kasan_check_read(), to
	 * generate a more useful report at the time ksize() is called (rather
	 * than later where behaviour is undefined due to potential
	 * use-after-free or double-free).
	 *
	 * If the pointed to memory is invalid we return 0, to avoid users of
	 * ksize() writing to and potentially corrupting the memory region.
	 *
	 * We want to perform the check before __ksize(), to avoid potentially
	 * crashing in __ksize() due to accessing invalid metadata.
	 */
	if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
		return 0;

	size = __ksize(objp);
	/*
	 * We assume that ksize callers could use whole allocated area,
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(objp, size);
	return size;
}
EXPORT_SYMBOL(ksize);

/* Tracepoints definitions. */
EXPORT_TRACEPOINT_SYMBOL(kmalloc);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
EXPORT_TRACEPOINT_SYMBOL(kfree);
EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);

int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
{
	if (__should_failslab(s, gfpflags))
		return -ENOMEM;
	return 0;
}
ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
back to top