Revision befb1b3c2703897c5b8ffb0044dc5d0e5f27c5d7 authored by Reinette Chatre on 19 September 2018, 17:29:06 UTC, committed by Thomas Gleixner on 28 September 2018, 20:44:53 UTC
It is possible that a failure can occur during the scheduling of a
pinned event. The initial portion of perf_event_read_local() contains
the various error checks an event should pass before it can be
considered valid. Ensure that the potential scheduling failure
of a pinned event is checked for and have a credible error.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/6486385d1f30336e9973b24c8c65f5079543d3d3.1537377064.git.reinette.chatre@intel.com

1 parent c307aaf
Raw File
sched-arch.txt
	CPU Scheduler implementation hints for architecture specific code

	Nick Piggin, 2005

Context switch
==============
1. Runqueue locking
By default, the switch_to arch function is called with the runqueue
locked. This is usually not a problem unless switch_to may need to
take the runqueue lock. This is usually due to a wake up operation in
the context switch. See arch/ia64/include/asm/switch_to.h for an example.

To request the scheduler call switch_to with the runqueue unlocked,
you must `#define __ARCH_WANT_UNLOCKED_CTXSW` in a header file
(typically the one where switch_to is defined).

Unlocked context switches introduce only a very minor performance
penalty to the core scheduler implementation in the CONFIG_SMP case.

CPU idle
========
Your cpu_idle routines need to obey the following rules:

1. Preempt should now disabled over idle routines. Should only
   be enabled to call schedule() then disabled again.

2. need_resched/TIF_NEED_RESCHED is only ever set, and will never
   be cleared until the running task has called schedule(). Idle
   threads need only ever query need_resched, and may never set or
   clear it.

3. When cpu_idle finds (need_resched() == 'true'), it should call
   schedule(). It should not call schedule() otherwise.

4. The only time interrupts need to be disabled when checking
   need_resched is if we are about to sleep the processor until
   the next interrupt (this doesn't provide any protection of
   need_resched, it prevents losing an interrupt).

	4a. Common problem with this type of sleep appears to be:
	        local_irq_disable();
	        if (!need_resched()) {
	                local_irq_enable();
	                *** resched interrupt arrives here ***
	                __asm__("sleep until next interrupt");
	        }

5. TIF_POLLING_NRFLAG can be set by idle routines that do not
   need an interrupt to wake them up when need_resched goes high.
   In other words, they must be periodically polling need_resched,
   although it may be reasonable to do some background work or enter
   a low CPU priority.

   	5a. If TIF_POLLING_NRFLAG is set, and we do decide to enter
	    an interrupt sleep, it needs to be cleared then a memory
	    barrier issued (followed by a test of need_resched with
	    interrupts disabled, as explained in 3).

arch/x86/kernel/process.c has examples of both polling and
sleeping idle functions.


Possible arch/ problems
=======================

Possible arch problems I found (and either tried to fix or didn't):

ia64 - is safe_halt call racy vs interrupts? (does it sleep?) (See #4a)

sh64 - Is sleeping racy vs interrupts? (See #4a)

sparc - IRQs on at this point(?), change local_irq_save to _disable.
      - TODO: needs secondary CPUs to disable preempt (See #1)

back to top