Revision c3cceac115c072fb63df1836ff46d8c60d9eb304 authored by dumerrill on 16 February 2018, 14:49:23 UTC, committed by dumerrill on 16 February 2018, 14:49:23 UTC
1 parent fb33c9f
Raw File
test_device_select_unique.cu
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/******************************************************************************
 * Test of DeviceSelect::Unique utilities
 ******************************************************************************/

// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR

#include <stdio.h>
#include <typeinfo>

#include <thrust/device_ptr.h>
#include <thrust/unique.h>

#include <cub/util_allocator.cuh>
#include <cub/iterator/counting_input_iterator.cuh>
#include <cub/device/device_select.cuh>

#include <thrust/device_ptr.h>
#include <thrust/unique.h>

#include "test_util.h"

using namespace cub;


//---------------------------------------------------------------------
// Globals, constants and typedefs
//---------------------------------------------------------------------

bool                    g_verbose               = false;
int                     g_timing_iterations     = 0;
int                     g_repeat                = 0;
float                   g_device_giga_bandwidth;
CachingDeviceAllocator  g_allocator(true);

// Dispatch types
enum Backend
{
    CUB,        // CUB method
    THRUST,     // Thrust method
    CDP,        // GPU-based (dynamic parallelism) dispatch to CUB method
};


//---------------------------------------------------------------------
// Dispatch to different CUB DeviceSelect entrypoints
//---------------------------------------------------------------------


/**
 * Dispatch to unique entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Dispatch(
    Int2Type<CUB>               dispatch_to,
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void*               d_temp_storage,
    size_t                      &temp_storage_bytes,
    InputIteratorT              d_in,
    OutputIteratorT              d_out,
    NumSelectedIteratorT         d_num_selected_out,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{
    cudaError_t error = cudaSuccess;
    for (int i = 0; i < timing_timing_iterations; ++i)
    {
        error = DeviceSelect::Unique(d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, stream, debug_synchronous);
    }
    return error;
}


//---------------------------------------------------------------------
// Dispatch to different Thrust entrypoints
//---------------------------------------------------------------------


/**
 * Dispatch to unique entrypoint
 */
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
__host__ __forceinline__
cudaError_t Dispatch(
    Int2Type<THRUST>            dispatch_to,
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void                        *d_temp_storage,
    size_t                      &temp_storage_bytes,
    InputIteratorT              d_in,
    OutputIteratorT             d_out,
    NumSelectedIteratorT        d_num_selected_out,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{
    // The input value type
    typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;

    // The output value type
    typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
        typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

    if (d_temp_storage == 0)
    {
        temp_storage_bytes = 1;
    }
    else
    {
        thrust::device_ptr<OutputT> d_out_wrapper_end;
        thrust::device_ptr<InputT> d_in_wrapper(d_in);
        thrust::device_ptr<OutputT> d_out_wrapper(d_out);
        for (int i = 0; i < timing_timing_iterations; ++i)
        {
            d_out_wrapper_end = thrust::unique_copy(d_in_wrapper, d_in_wrapper + num_items, d_out_wrapper);
        }

        OffsetT num_selected = OffsetT(d_out_wrapper_end - d_out_wrapper);
        CubDebugExit(cudaMemcpy(d_num_selected_out, &num_selected, sizeof(OffsetT), cudaMemcpyHostToDevice));

    }

    return cudaSuccess;
}



//---------------------------------------------------------------------
// CUDA Nested Parallelism Test Kernel
//---------------------------------------------------------------------

/**
 * Simple wrapper kernel to invoke DeviceSelect
 */
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
__global__ void CnpDispatchKernel(
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void*               d_temp_storage,
    size_t                      temp_storage_bytes,
    InputIteratorT              d_in,
    OutputIteratorT              d_out,
    NumSelectedIteratorT         d_num_selected_out,
    OffsetT                     num_items,
    bool                        debug_synchronous)
{

#ifndef CUB_CDP
    *d_cdp_error = cudaErrorNotSupported;
#else
    *d_cdp_error = Dispatch(Int2Type<CUB>(), timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
        d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, debug_synchronous);
    *d_temp_storage_bytes = temp_storage_bytes;
#endif
}


/**
 * Dispatch to CDP kernel
 */
template <typename InputIteratorT, typename OutputIteratorT, typename NumSelectedIteratorT, typename OffsetT>
cudaError_t Dispatch(
    Int2Type<CDP>               dispatch_to,
    int                         timing_timing_iterations,
    size_t                      *d_temp_storage_bytes,
    cudaError_t                 *d_cdp_error,

    void*               d_temp_storage,
    size_t                      &temp_storage_bytes,
    InputIteratorT              d_in,
    OutputIteratorT              d_out,
    NumSelectedIteratorT         d_num_selected_out,
    OffsetT                     num_items,
    cudaStream_t                stream,
    bool                        debug_synchronous)
{
    // Invoke kernel to invoke device-side dispatch
    CnpDispatchKernel<<<1,1>>>(timing_timing_iterations, d_temp_storage_bytes, d_cdp_error,
        d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, debug_synchronous);

    // Copy out temp_storage_bytes
    CubDebugExit(cudaMemcpy(&temp_storage_bytes, d_temp_storage_bytes, sizeof(size_t) * 1, cudaMemcpyDeviceToHost));

    // Copy out error
    cudaError_t retval;
    CubDebugExit(cudaMemcpy(&retval, d_cdp_error, sizeof(cudaError_t) * 1, cudaMemcpyDeviceToHost));
    return retval;
}



//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------


/**
 * Initialize problem
 */
template <typename T>
void Initialize(
    int         entropy_reduction,
    T           *h_in,
    int         num_items,
    int         max_segment)
{
    unsigned int max_int = (unsigned int) -1;

    int key = 0;
    int i = 0;
    while (i < num_items)
    {
        // Select number of repeating occurrences for the current run
        int repeat;
        if (max_segment < 0)
        {
            repeat = num_items;
        }
        else if (max_segment < 2)
        {
            repeat = 1;
        }
        else
        {
            RandomBits(repeat, entropy_reduction);
            repeat = (int) ((double(repeat) * double(max_segment)) / double(max_int));
            repeat = CUB_MAX(1, repeat);
        }

        int j = i;
        while (j < CUB_MIN(i + repeat, num_items))
        {
            InitValue(INTEGER_SEED, h_in[j], key);
            j++;
        }

        i = j;
        key++;
    }

    if (g_verbose)
    {
        printf("Input:\n");
        DisplayResults(h_in, num_items);
        printf("\n\n");
    }
}


/**
 * Solve unique problem
 */
template <
    typename        InputIteratorT,
    typename        T>
int Solve(
    InputIteratorT  h_in,
    T               *h_reference,
    int             num_items)
{
    int num_selected = 0;
    if (num_items > 0)
    {
        h_reference[num_selected] = h_in[0];
        num_selected++;
    }

    for (int i = 1; i < num_items; ++i)
    {
        if (h_in[i] != h_in[i - 1])
        {
            h_reference[num_selected] = h_in[i];
            num_selected++;
        }
    }

    return num_selected;
}



/**
 * Test DeviceSelect for a given problem input
 */
template <
    Backend             BACKEND,
    typename            DeviceInputIteratorT,
    typename            T>
void Test(
    DeviceInputIteratorT d_in,
    T                   *h_reference,
    int                 num_selected,
    int                 num_items)
{
    // Allocate device output array and num selected
    T       *d_out            = NULL;
    int     *d_num_selected_out   = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(T) * num_items));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_num_selected_out, sizeof(int)));

    // Allocate CDP device arrays
    size_t          *d_temp_storage_bytes = NULL;
    cudaError_t     *d_cdp_error = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_temp_storage_bytes,  sizeof(size_t) * 1));
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_cdp_error,           sizeof(cudaError_t) * 1));

    // Allocate temporary storage
    void            *d_temp_storage = NULL;
    size_t          temp_storage_bytes = 0;
    CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, true));
    CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));

    // Clear device output array
    CubDebugExit(cudaMemset(d_out, 0, sizeof(T) * num_items));
    CubDebugExit(cudaMemset(d_num_selected_out, 0, sizeof(int)));

    // Run warmup/correctness iteration
    CubDebugExit(Dispatch(Int2Type<BACKEND>(), 1, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, true));

    // Check for correctness (and display results, if specified)
    int compare1 = CompareDeviceResults(h_reference, d_out, num_selected, true, g_verbose);
    printf("\t Data %s ", compare1 ? "FAIL" : "PASS");

    int compare2 = CompareDeviceResults(&num_selected, d_num_selected_out, 1, true, g_verbose);
    printf("\t Count %s ", compare2 ? "FAIL" : "PASS");

    // Flush any stdout/stderr
    fflush(stdout);
    fflush(stderr);

    // Performance
    GpuTimer gpu_timer;
    gpu_timer.Start();
    CubDebugExit(Dispatch(Int2Type<BACKEND>(), g_timing_iterations, d_temp_storage_bytes, d_cdp_error, d_temp_storage, temp_storage_bytes, d_in, d_out, d_num_selected_out, num_items, 0, false));
    gpu_timer.Stop();
    float elapsed_millis = gpu_timer.ElapsedMillis();

    // Display performance
    if (g_timing_iterations > 0)
    {
        float avg_millis        = elapsed_millis / g_timing_iterations;
        float giga_rate         = float(num_items) / avg_millis / 1000.0f / 1000.0f;
        float giga_bandwidth    = float((num_items + num_selected) * sizeof(T)) / avg_millis / 1000.0f / 1000.0f;
        printf(", %.3f avg ms, %.3f billion items/s, %.3f logical GB/s, %.1f%% peak", avg_millis, giga_rate, giga_bandwidth, giga_bandwidth / g_device_giga_bandwidth * 100.0);
    }
    printf("\n\n");

    // Flush any stdout/stderr
    fflush(stdout);
    fflush(stderr);

    // Cleanup
    if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
    if (d_num_selected_out) CubDebugExit(g_allocator.DeviceFree(d_num_selected_out));
    if (d_temp_storage_bytes) CubDebugExit(g_allocator.DeviceFree(d_temp_storage_bytes));
    if (d_cdp_error) CubDebugExit(g_allocator.DeviceFree(d_cdp_error));
    if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));

    // Correctness asserts
    AssertEquals(0, compare1 | compare2);
}


/**
 * Test DeviceSelect on pointer type
 */
template <
    Backend         BACKEND,
    typename        T>
void TestPointer(
    int             num_items,
    int             entropy_reduction,
    int             max_segment)
{
    // Allocate host arrays
    T*  h_in        = new T[num_items];
    T*  h_reference = new T[num_items];

    // Initialize problem and solution
    Initialize(entropy_reduction, h_in, num_items, max_segment);
    int num_selected = Solve(h_in, h_reference, num_items);

    printf("\nPointer %s cub::DeviceSelect::Unique %d items, %d selected (avg run length %.3f), %s %d-byte elements, entropy_reduction %d\n",
        (BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
        num_items, num_selected, float(num_items) / num_selected,
        typeid(T).name(),
        (int) sizeof(T),
        entropy_reduction);
    fflush(stdout);

    // Allocate problem device arrays
    T *d_in = NULL;
    CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(T) * num_items));

    // Initialize device input
    CubDebugExit(cudaMemcpy(d_in, h_in, sizeof(T) * num_items, cudaMemcpyHostToDevice));

    // Run Test
    Test<BACKEND>(d_in, h_reference, num_selected, num_items);

    // Cleanup
    if (h_in) delete[] h_in;
    if (h_reference) delete[] h_reference;
    if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
}


/**
 * Test DeviceSelect on iterator type
 */
template <
    Backend         BACKEND,
    typename        T>
void TestIterator(
    int             num_items)
{
    // Use a counting iterator as the input
    CountingInputIterator<T, int> h_in(0);

    // Allocate host arrays
    T*  h_reference = new T[num_items];

    // Initialize problem and solution
    int num_selected = Solve(h_in, h_reference, num_items);

    printf("\nIterator %s cub::DeviceSelect::Unique %d items, %d selected (avg run length %.3f), %s %d-byte elements\n",
        (BACKEND == CDP) ? "CDP CUB" : (BACKEND == THRUST) ? "Thrust" : "CUB",
        num_items, num_selected, float(num_items) / num_selected,
        typeid(T).name(),
        (int) sizeof(T));
    fflush(stdout);

    // Run Test
    Test<BACKEND>(h_in, h_reference, num_selected, num_items);

    // Cleanup
    if (h_reference) delete[] h_reference;
}


/**
 * Test different gen modes
 */
template <
    Backend         BACKEND,
    typename        T>
void Test(
    int             num_items)
{
    for (int max_segment = 1; ((max_segment > 0) && (max_segment < num_items)); max_segment *= 11)
    {
        TestPointer<BACKEND, T>(num_items, 0, max_segment);
        TestPointer<BACKEND, T>(num_items, 2, max_segment);
        TestPointer<BACKEND, T>(num_items, 7, max_segment);
    }
}


/**
 * Test different dispatch
 */
template <
    typename        T>
void TestOp(
    int             num_items)
{
    Test<CUB, T>(num_items);
#ifdef CUB_CDP
    Test<CDP, T>(num_items);
#endif
}


/**
 * Test different input sizes
 */
template <typename T>
void Test(
    int             num_items)
{
    if (num_items < 0)
    {
        TestOp<T>(0);
        TestOp<T>(1);
        TestOp<T>(100);
        TestOp<T>(10000);
        TestOp<T>(1000000);
    }
    else
    {
        TestOp<T>(num_items);
    }
}



//---------------------------------------------------------------------
// Main
//---------------------------------------------------------------------

/**
 * Main
 */
int main(int argc, char** argv)
{
    int num_items           = -1;
    int entropy_reduction   = 0;
    int maxseg              = 1000;

    // Initialize command line
    CommandLineArgs args(argc, argv);
    g_verbose = args.CheckCmdLineFlag("v");
    args.GetCmdLineArgument("n", num_items);
    args.GetCmdLineArgument("i", g_timing_iterations);
    args.GetCmdLineArgument("repeat", g_repeat);
    args.GetCmdLineArgument("maxseg", maxseg);
    args.GetCmdLineArgument("entropy", entropy_reduction);

    // Print usage
    if (args.CheckCmdLineFlag("help"))
    {
        printf("%s "
            "[--n=<input items> "
            "[--i=<timing iterations> "
            "[--device=<device-id>] "
            "[--maxseg=<max segment length>]"
            "[--entropy=<segment length bit entropy reduction rounds>]"
            "[--repeat=<repetitions of entire test suite>]"
            "[--v] "
            "[--cdp]"
            "\n", argv[0]);
        exit(0);
    }

    // Initialize device
    CubDebugExit(args.DeviceInit());
    g_device_giga_bandwidth = args.device_giga_bandwidth;
    printf("\n");

#ifdef QUICKER_TEST

    // Compile/run basic CUB test
    if (num_items < 0) num_items = 32000000;
    TestPointer<CUB, int>(         num_items,                                 entropy_reduction, maxseg);

#elif defined(QUICK_TEST)

    // Get device ordinal
    int device_ordinal;
    CubDebugExit(cudaGetDevice(&device_ordinal));

    // Get device SM version
    int sm_version;
    CubDebugExit(SmVersion(sm_version, device_ordinal));

    // Compile/run quick tests
    if (num_items < 0) num_items = 32000000;

    printf("-- Iterator ----------------------------\n");
    TestIterator<CUB, int>(        num_items);

    printf("----------------------------\n");
    TestPointer<CUB, char>(        num_items * ((sm_version <= 130) ? 1 : 4), entropy_reduction, maxseg);
    TestPointer<THRUST, char>(     num_items * ((sm_version <= 130) ? 1 : 4), entropy_reduction, maxseg);

    printf("----------------------------\n");
    TestPointer<CUB, short>(       num_items * ((sm_version <= 130) ? 1 : 2), entropy_reduction, maxseg);
    TestPointer<THRUST, short>(    num_items * ((sm_version <= 130) ? 1 : 2), entropy_reduction, maxseg);

    printf("----------------------------\n");
    TestPointer<CUB, int>(         num_items,                                 entropy_reduction, maxseg);
    TestPointer<THRUST, int>(      num_items,                                 entropy_reduction, maxseg);

    printf("----------------------------\n");
    TestPointer<CUB, long long>(   num_items / 2,                             entropy_reduction, maxseg);
    TestPointer<THRUST, long long>(num_items / 2,                             entropy_reduction, maxseg);

    printf("----------------------------\n");
    TestPointer<CUB, TestFoo>(     num_items / 4,                             entropy_reduction, maxseg);
    TestPointer<THRUST, TestFoo>(  num_items / 4,                             entropy_reduction, maxseg);

#else

    // Compile/run thorough tests
    for (int i = 0; i <= g_repeat; ++i)
    {
        // Test different input types
        Test<unsigned char>(num_items);
        Test<unsigned short>(num_items);
        Test<unsigned int>(num_items);
        Test<unsigned long long>(num_items);

        Test<uchar2>(num_items);
        Test<ushort2>(num_items);
        Test<uint2>(num_items);
        Test<ulonglong2>(num_items);

        Test<uchar4>(num_items);
        Test<ushort4>(num_items);
        Test<uint4>(num_items);
        Test<ulonglong4>(num_items);

        Test<TestFoo>(num_items);
        Test<TestBar>(num_items);
    }

#endif

    return 0;
}



back to top