Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision c4b2c08fcdc2664e886be357161da815abb8f2bc authored by Jean Kossaifi on 27 August 2017, 20:04:05 UTC, committed by Jean Kossaifi on 27 August 2017, 20:04:05 UTC
Updated doc and website
1 parent 72f040b
  • Files
  • Changes
  • e5c34ea
  • /
  • tensorly
  • /
  • decomposition
  • /
  • candecomp_parafac.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:c4b2c08fcdc2664e886be357161da815abb8f2bc
directory badge Iframe embedding
swh:1:dir:0325b03ed91719e64ab421288f2519557b0f0c7d
content badge Iframe embedding
swh:1:cnt:006b6769d60830a175d33d9ef3562ec1bf01c1b5

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
candecomp_parafac.py
import numpy as np
from .. import backend as T
from ..random import check_random_state
from ..base import unfold
from ..kruskal_tensor import kruskal_to_tensor
from ..tenalg import khatri_rao

# Author: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>

# License: BSD 3 clause


def parafac(tensor, rank, n_iter_max=100, init='svd', tol=10e-7,
            random_state=None, verbose=False):
    """CANDECOMP/PARAFAC decomposition via alternating least squares (ALS)

        Computes a rank-`rank` decomposition of `tensor` [1]_ such that:
        ``tensor = [| factors[0], ..., factors[-1] |]``

    Parameters
    ----------
    tensor : ndarray
    rank  : int
            number of components
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity

    Returns
    -------
    factors : ndarray list
            list of factors of the CP decomposition
            element `i` is of shape (tensor.shape[i], rank)

    References
    ----------
    .. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
    """
    rng = check_random_state(random_state)

    if init is 'random':
        factors = [T.tensor(rng.random_sample((tensor.shape[i], rank))) for i in range(tensor.ndim)]

    elif init is 'svd':
        factors = []
        for mode in range(tensor.ndim):
            U, _, _ = T.partial_svd(unfold(tensor, mode), n_eigenvecs=rank)

            if tensor.shape[mode] < rank:
                # TODO: this is a hack but it seems to do the job for now
                factor = T.tensor(np.zeros((U.shape[0], rank)))
                factor[:, tensor.shape[mode]:] = T.tensor(rng.random_sample((U.shape[0], rank - tensor.shape[mode])))
                factor[:, :tensor.shape[mode]] = U
                U = T.tensor(factor)
            factors.append(U[:, :rank])

    rec_errors = []
    norm_tensor = T.norm(tensor, 2)

    for iteration in range(n_iter_max):
        for mode in range(tensor.ndim):
            pseudo_inverse = T.tensor(np.ones((rank, rank)))
            for i, factor in enumerate(factors):
                if i != mode:
                    pseudo_inverse[:] = pseudo_inverse*T.dot(factor.T, factor)
            factor = T.dot(unfold(tensor, mode), khatri_rao(factors, skip_matrix=mode))
            factor = T.solve(pseudo_inverse.T, factor.T).T
            factors[mode] = factor

        #if verbose or tol:
        rec_error = T.norm(tensor - kruskal_to_tensor(factors), 2) / norm_tensor
        rec_errors.append(rec_error)

        if iteration > 1:
            if verbose:
                print('reconsturction error={}, variation={}.'.format(
                    rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

            if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                if verbose:
                    print('converged in {} iterations.'.format(iteration))
                break

    return factors


def non_negative_parafac(tensor, rank, n_iter_max=100, init='svd', tol=10e-7,
                         random_state=None, verbose=0):
    """Non-negative CP decomposition

        Uses multiplicative updates, see [2]_

    Parameters
    ----------
    tensor : ndarray
    rank   : int
            number of components
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity

    Returns
    -------
    factors : ndarray list
            list of positive factors of the CP decomposition
            element `i` is of shape ``(tensor.shape[i], rank)``

    References
    ----------
    .. [2] Amnon Shashua and Tamir Hazan,
       "Non-negative tensor factorization with applications to statistics and computer vision",
       In Proceedings of the International Conference on Machine Learning (ICML),
       pp 792–799, ICML, 2005
    """
    epsilon = 10e-12

    # Initialisation
    if init == 'svd':
        factors = parafac(tensor, rank)
        nn_factors = [T.abs(f) for f in factors]
    else:
        rng = check_random_state(random_state)
        nn_factors = [T.tensor(np.abs(rng.random_sample((s, rank)))) for s in tensor.shape]

    n_factors = len(nn_factors)
    norm_tensor = T.norm(tensor, 2)
    rec_errors = []

    for iteration in range(n_iter_max):
        for mode in range(tensor.ndim):
            # khatri_rao(factors).T.dot(khatri_rao(factors))
            # simplifies to multiplications
            sub_indices = [i for i in range(n_factors) if i != mode]
            for i, e in enumerate(sub_indices):
                if i:
                    accum[:] = accum*T.dot(nn_factors[e].T, nn_factors[e])
                else:
                    accum = T.dot(nn_factors[e].T, nn_factors[e])

            numerator = T.dot(unfold(tensor, mode), khatri_rao(nn_factors, skip_matrix=mode))
            numerator = T.clip(numerator, a_min=epsilon, a_max=None)
            denominator = T.dot(nn_factors[mode], accum)
            denominator = T.clip(denominator, a_min=epsilon, a_max=None)
            nn_factors[mode][:] = nn_factors[mode]* numerator / denominator

        rec_error = T.norm(tensor - kruskal_to_tensor(nn_factors), 2) / norm_tensor
        rec_errors.append(rec_error)
        if iteration > 1 and verbose:
            print('reconstruction error={}, variation={}.'.format(
                rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

        if iteration > 1 and abs(rec_errors[-2] - rec_errors[-1]) < tol:
            if verbose:
                print('converged in {} iterations.'.format(iteration))
            break

    return nn_factors
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API