Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision c4b2c08fcdc2664e886be357161da815abb8f2bc authored by Jean Kossaifi on 27 August 2017, 20:04:05 UTC, committed by Jean Kossaifi on 27 August 2017, 20:04:05 UTC
Updated doc and website
1 parent 72f040b
  • Files
  • Changes
  • e5c34ea
  • /
  • tensorly
  • /
  • tests
  • /
  • test_backend.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:c4b2c08fcdc2664e886be357161da815abb8f2bc
directory badge Iframe embedding
swh:1:dir:60e4307e6af44439271e72008de195c2a1d056f2
content badge Iframe embedding
swh:1:cnt:f0a6b5137beaa1c11b420fc740573eefe839f3de

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
test_backend.py
import numpy as np
from scipy.sparse.linalg import svds
from scipy.linalg import svd

from .. import backend as T
from ..base import fold, unfold
from ..base import partial_fold, partial_unfold
from ..base import tensor_to_vec, vec_to_tensor
from ..base import partial_tensor_to_vec, partial_vec_to_tensor

# Author: Jean Kossaifi

def test_unfold():
    """Test for unfold

    1. We do an exact test.
    
    2. Second,  a test inspired by the example in Kolda's paper:
       Even though we use a different definition of the unfolding,
       it should only differ by the ordering of the columns
    """
    X = T.tensor([[[1, 13],
                   [4, 16],
                   [7, 19],
                   [10, 22]],

                  [[2, 14],
                   [5, 17],
                   [8, 20],
                   [11, 23]],

                  [[3, 15],
                   [6, 18],
                   [9, 21],
                   [12, 24]]])

    X = T.tensor(T.arange(24).reshape((3, 4, 2)))
    unfoldings = [T.tensor([[0, 1, 2, 3, 4, 5, 6, 7],
                            [8, 9, 10, 11, 12, 13, 14, 15],
                            [16, 17, 18, 19, 20, 21, 22, 23]]),
                  T.tensor([[0, 1, 8, 9, 16, 17],
                            [2, 3, 10, 11, 18, 19],
                            [4, 5, 12, 13, 20, 21],
                            [6, 7, 14, 15, 22, 23]]),
                  T.tensor([[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22],
                            [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]])]
    for mode in range(X.ndim):
        unfolding = unfold(X, mode=mode)
        T.assert_array_equal(unfolding, unfoldings[mode])
        T.assert_array_equal(unfolding.reshape((-1, )), unfoldings[mode].reshape((-1,)))


def test_fold():
    """Test for fold
    """
    X = T.arange(24).reshape((3, 4, 2))
    unfoldings = [T.tensor([[0, 1, 2, 3, 4, 5, 6, 7],
                            [8, 9, 10, 11, 12, 13, 14, 15],
                            [16, 17, 18, 19, 20, 21, 22, 23]]),
    		  T.tensor([[0, 1, 8, 9, 16, 17],
                            [2, 3, 10, 11, 18, 19],
                            [4, 5, 12, 13, 20, 21],
                            [6, 7, 14, 15, 22, 23]]),
    		  T.tensor([[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22],
                            [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]])]
    # hard coded example
    for mode in range(X.ndim):
    	T.assert_array_equal(fold(unfoldings[mode], mode, X.shape), X)

    # check dims
    for i in range(X.ndim):
        T.assert_array_equal(X, fold(unfold(X, i), i, X.shape))

    # chain unfolding and folding
    X = T.tensor(np.random.random(2 * 3 * 4 * 5).reshape(2, 3, 4, 5))
    for i in range(X.ndim):
        T.assert_array_equal(X, fold(unfold(X, i), i, X.shape))

 
def test_tensor_to_vec():
    """Test for tensor_to_vec"""
    X = T.tensor([[[ 0,  1],
                   [ 2,  3],
                   [ 4,  5],
                   [ 6,  7]],

                  [[ 8,  9],
                   [10, 11],
                   [12, 13],
                   [14, 15]],

                  [[16, 17],
                   [18, 19],
                   [20, 21],
                   [22, 23]]])
    true_res = T.tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11,
                         12, 13, 14, 15, 16,  17, 18, 19, 20, 21, 22, 23])
    T.assert_array_equal(tensor_to_vec(X), true_res)


def test_vec_to_tensor():
    """Test for tensor_to_vec"""
    X = T.tensor([[[ 0,  1],
                   [ 2,  3],
                   [ 4,  5],
                   [ 6,  7]],

                  [[ 8,  9],
                   [10, 11],
                   [12, 13],
                   [14, 15]],

                  [[16, 17],
                   [18, 19],
                   [20, 21],
                   [22, 23]]])
    vec = T.tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11,
                    12, 13, 14, 15, 16,  17, 18, 19, 20, 21, 22, 23])
    T.assert_array_equal(X, vec_to_tensor(vec, X.shape))

    # Convert to vector and back to tensor
    X = T.tensor(np.random.random((3, 4, 5, 2)))
    vec = tensor_to_vec(X)
    reconstructed = vec_to_tensor(vec, X.shape)
    T.assert_array_equal(X, reconstructed)


def test_partial_unfold():
    """Test for partial_unfold

    Notes
    -----
    Assumes that the standard unfold is correct!
    """
    X = T.arange(24).reshape((3, 4, 2))
    n_samples = 3
    ###################################
    # Samples are the first dimension #
    ###################################
    tensor = T.tensor(np.concatenate([np.arange(24).reshape((1, 3, 4, 2))+i\
                                      for i in range(n_samples)]))
    t = T.tensor(X)
    # We created here a tensor with 3 samples, each sample being similar to X
    for i in range(X.ndim):  # test for each mode
        unfolded = partial_unfold(tensor, i, skip_begin=1)
        unfolded_X = unfold(t, i)
        for j in range(n_samples):  # test for each sample
            T.assert_array_equal(unfolded[j], unfolded_X+j)
    # Test for raveled tensor
    for i in range(X.ndim):  # test for each mode
        unfolded = partial_unfold(tensor, mode=i, skip_begin=1, ravel_tensors=True)
        unfolded_X = unfold(t, i).reshape((-1, ))
        for j in range(n_samples):  # test for each sample
            T.assert_array_equal(unfolded[j], unfolded_X + j)
    
    ##################################
    # Samples are the last dimension #
    ##################################
    tensor = T.tensor(np.concatenate([np.arange(24).reshape((3, 4, 2, 1))+i\
                                      for i in range(n_samples)], axis=-1))
    for i in range(X.ndim):  # test for each mode
        unfolded = partial_unfold(tensor, mode=i, skip_end=1, skip_begin=0)
        unfolded_X = unfold(t, i)
        for j in range(n_samples):  # test for each sample
            T.assert_array_equal(unfolded.T[j].T, unfolded_X+j)
    
    # Test for raveled tensor
    for i in range(X.ndim):  # test for each mode
        unfolded = partial_unfold(tensor, mode=i, skip_end=1, skip_begin=0, ravel_tensors=True)
        unfolded_X = unfold(t, i).reshape((-1, ))
        for j in range(n_samples):  # test for each sample
            T.assert_array_equal(unfolded.T[j], unfolded_X+j)

def test_partial_fold():
    """Test for partial_fold

    Assumes partial unfolding works and check that
    refolding partially folded tensors results in
    the original tensor.
    """
    X = T.arange(24).reshape((3, 4, 2))
    unfolded = T.tensor([[[ 0,  1,  2,  3,  4,  5,  6,  7],
                          [ 8,  9, 10, 11, 12, 13, 14, 15],
                          [16, 17, 18, 19, 20, 21, 22, 23]],
                         [[ 0,  1,  2,  3,  4,  5,  6,  7],
                          [ 8,  9, 10, 11, 12, 13, 14, 15],
                          [16, 17, 18, 19, 20, 21, 22, 23]],
                         [[ 0,  1,  2,  3,  4,  5,  6,  7],
                          [ 8,  9, 10, 11, 12, 13, 14, 15],
                          [16, 17, 18, 19, 20, 21, 22, 23]]])
    folded = partial_fold(unfolded, 0, (3, 3, 4, 2), skip_begin=1)
    for i in range(3):
        T.assert_array_equal(folded[i], X)

    shape = [3, 4, 5, 6]
    X = T.tensor(np.random.random(shape))
    for i in [0, 1]:
        for mode in range(len(shape)-1):
            unfolded = partial_unfold(X, mode=mode, skip_begin=i, skip_end=(1-i))
            refolded = partial_fold(unfolded, mode=mode, shape=shape, skip_begin=i, skip_end=(1-i))
            T.assert_array_equal(refolded, X)

    # Test for raveled_tensor=True
    for i in [0, 1]:
        for mode in range(len(shape)-1):
            unfolded = partial_unfold(X, mode=mode, skip_begin=i, skip_end=(1-i), ravel_tensors=True)
            refolded = partial_fold(unfolded, mode=mode, shape=shape, skip_begin=i, skip_end=(1-i))
            T.assert_array_equal(refolded, X)



def test_partial_tensor_to_vec():
    """Test for partial_tensor_to_vec """
    X = np.arange(24).reshape((3, 4, 2))
    n_samples = 3

    ###################################
    # Samples are the first dimension #
    ###################################
    tensor = T.tensor(np.concatenate([X[None, ...]+i for i in range(n_samples)]))
    #we created here a tensor with 3 samples, each sample being similar to X
    vectorised = partial_tensor_to_vec(tensor, skip_begin=1)
    vec_X = tensor_to_vec(T.tensor(X))
    for j in range(n_samples): # test for each sample
        T.assert_array_equal(vectorised[j], vec_X+j)

    ##################################
    # Samples are the last dimension #
    ##################################
    tensor = T.tensor(np.concatenate([X[..., None]+i for i in range(n_samples)], axis=-1))
    vectorised = partial_tensor_to_vec(tensor, skip_end=1, skip_begin=0)
    vec_X = tensor_to_vec(T.tensor(X))
    for j in range(n_samples): # test for each sample
        T.assert_array_equal(vectorised.T[j], vec_X+j)


def test_partial_vec_to_tensor():
    """Test for partial_vec_to_tensor
    """
    X = np.arange(24).reshape((3, 4, 2))

    vectorised = T.tensor([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
                            15, 16, 17, 18, 19, 20, 21, 22, 23],
                           [ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
                            16, 17, 18, 19, 20, 21, 22, 23, 24],
                           [ 2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
                            17, 18, 19, 20, 21, 22, 23, 24, 25]])
    folded = partial_vec_to_tensor(vectorised, (3, 3, 4, 2), skip_begin=1)
    for i in range(3):
        T.assert_array_equal(folded[i], X+i)

    shape = [3, 4, 5, 6]
    X = T.tensor(np.random.random(shape))
    for i in [0, 1]:
        vec = partial_tensor_to_vec(X, skip_begin=i, skip_end=(1-i))
        ten = partial_vec_to_tensor(vec, shape=shape, skip_begin=i, skip_end=(1-i))
        T.assert_array_equal(X, ten)


def test_partial_svd():
    """Test for partial_svd"""
    sizes = [(100, 100), (100, 5), (10, 10), (5, 100)]
    n_eigenvecs = [10, 4, 5, 4]

    # Compare with sparse SVD
    for s, n in zip(sizes, n_eigenvecs):
        matrix = np.random.random(s)
        fU, fS, fV = T.partial_svd(T.tensor(matrix), n_eigenvecs=n)
        U, S, V = svds(matrix, k=n, which='LM')
        U, S, V = U[:, ::-1], S[::-1], V[::-1, :]
        T.assert_array_almost_equal(np.abs(S), T.abs(fS))
        T.assert_array_almost_equal(np.abs(U), T.abs(fU))
        T.assert_array_almost_equal(np.abs(V), T.abs(fV))

    # Compare with standard SVD
    sizes = [(100, 100), (100, 5), (10, 10), (10, 4), (5, 100)]
    n_eigenvecs = [10, 4, 5, 4, 4]
    for s, n in zip(sizes, n_eigenvecs):
        matrix = np.random.random(s)
        fU, fS, fV = T.partial_svd(T.tensor(matrix), n_eigenvecs=n)

        U, S, V = svd(matrix)
        U, S, V = U[:, :n], S[:n], V[:n, :]
        # Test for SVD
        T.assert_array_almost_equal(np.abs(S), T.abs(fS))
        T.assert_array_almost_equal(np.abs(U), T.abs(fU))
        T.assert_array_almost_equal(np.abs(V), T.abs(fV))

    with T.assert_raises(ValueError):
        tensor = T.tensor(np.random.random((3, 3, 3)))
        T.partial_svd(tensor)
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API