Revision c4b2c08fcdc2664e886be357161da815abb8f2bc authored by Jean Kossaifi on 27 August 2017, 20:04:05 UTC, committed by Jean Kossaifi on 27 August 2017, 20:04:05 UTC
1 parent 72f040b
test_backend.py
import numpy as np
from scipy.sparse.linalg import svds
from scipy.linalg import svd
from .. import backend as T
from ..base import fold, unfold
from ..base import partial_fold, partial_unfold
from ..base import tensor_to_vec, vec_to_tensor
from ..base import partial_tensor_to_vec, partial_vec_to_tensor
# Author: Jean Kossaifi
def test_unfold():
"""Test for unfold
1. We do an exact test.
2. Second, a test inspired by the example in Kolda's paper:
Even though we use a different definition of the unfolding,
it should only differ by the ordering of the columns
"""
X = T.tensor([[[1, 13],
[4, 16],
[7, 19],
[10, 22]],
[[2, 14],
[5, 17],
[8, 20],
[11, 23]],
[[3, 15],
[6, 18],
[9, 21],
[12, 24]]])
X = T.tensor(T.arange(24).reshape((3, 4, 2)))
unfoldings = [T.tensor([[0, 1, 2, 3, 4, 5, 6, 7],
[8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]]),
T.tensor([[0, 1, 8, 9, 16, 17],
[2, 3, 10, 11, 18, 19],
[4, 5, 12, 13, 20, 21],
[6, 7, 14, 15, 22, 23]]),
T.tensor([[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22],
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]])]
for mode in range(X.ndim):
unfolding = unfold(X, mode=mode)
T.assert_array_equal(unfolding, unfoldings[mode])
T.assert_array_equal(unfolding.reshape((-1, )), unfoldings[mode].reshape((-1,)))
def test_fold():
"""Test for fold
"""
X = T.arange(24).reshape((3, 4, 2))
unfoldings = [T.tensor([[0, 1, 2, 3, 4, 5, 6, 7],
[8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]]),
T.tensor([[0, 1, 8, 9, 16, 17],
[2, 3, 10, 11, 18, 19],
[4, 5, 12, 13, 20, 21],
[6, 7, 14, 15, 22, 23]]),
T.tensor([[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22],
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]])]
# hard coded example
for mode in range(X.ndim):
T.assert_array_equal(fold(unfoldings[mode], mode, X.shape), X)
# check dims
for i in range(X.ndim):
T.assert_array_equal(X, fold(unfold(X, i), i, X.shape))
# chain unfolding and folding
X = T.tensor(np.random.random(2 * 3 * 4 * 5).reshape(2, 3, 4, 5))
for i in range(X.ndim):
T.assert_array_equal(X, fold(unfold(X, i), i, X.shape))
def test_tensor_to_vec():
"""Test for tensor_to_vec"""
X = T.tensor([[[ 0, 1],
[ 2, 3],
[ 4, 5],
[ 6, 7]],
[[ 8, 9],
[10, 11],
[12, 13],
[14, 15]],
[[16, 17],
[18, 19],
[20, 21],
[22, 23]]])
true_res = T.tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
T.assert_array_equal(tensor_to_vec(X), true_res)
def test_vec_to_tensor():
"""Test for tensor_to_vec"""
X = T.tensor([[[ 0, 1],
[ 2, 3],
[ 4, 5],
[ 6, 7]],
[[ 8, 9],
[10, 11],
[12, 13],
[14, 15]],
[[16, 17],
[18, 19],
[20, 21],
[22, 23]]])
vec = T.tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
T.assert_array_equal(X, vec_to_tensor(vec, X.shape))
# Convert to vector and back to tensor
X = T.tensor(np.random.random((3, 4, 5, 2)))
vec = tensor_to_vec(X)
reconstructed = vec_to_tensor(vec, X.shape)
T.assert_array_equal(X, reconstructed)
def test_partial_unfold():
"""Test for partial_unfold
Notes
-----
Assumes that the standard unfold is correct!
"""
X = T.arange(24).reshape((3, 4, 2))
n_samples = 3
###################################
# Samples are the first dimension #
###################################
tensor = T.tensor(np.concatenate([np.arange(24).reshape((1, 3, 4, 2))+i\
for i in range(n_samples)]))
t = T.tensor(X)
# We created here a tensor with 3 samples, each sample being similar to X
for i in range(X.ndim): # test for each mode
unfolded = partial_unfold(tensor, i, skip_begin=1)
unfolded_X = unfold(t, i)
for j in range(n_samples): # test for each sample
T.assert_array_equal(unfolded[j], unfolded_X+j)
# Test for raveled tensor
for i in range(X.ndim): # test for each mode
unfolded = partial_unfold(tensor, mode=i, skip_begin=1, ravel_tensors=True)
unfolded_X = unfold(t, i).reshape((-1, ))
for j in range(n_samples): # test for each sample
T.assert_array_equal(unfolded[j], unfolded_X + j)
##################################
# Samples are the last dimension #
##################################
tensor = T.tensor(np.concatenate([np.arange(24).reshape((3, 4, 2, 1))+i\
for i in range(n_samples)], axis=-1))
for i in range(X.ndim): # test for each mode
unfolded = partial_unfold(tensor, mode=i, skip_end=1, skip_begin=0)
unfolded_X = unfold(t, i)
for j in range(n_samples): # test for each sample
T.assert_array_equal(unfolded.T[j].T, unfolded_X+j)
# Test for raveled tensor
for i in range(X.ndim): # test for each mode
unfolded = partial_unfold(tensor, mode=i, skip_end=1, skip_begin=0, ravel_tensors=True)
unfolded_X = unfold(t, i).reshape((-1, ))
for j in range(n_samples): # test for each sample
T.assert_array_equal(unfolded.T[j], unfolded_X+j)
def test_partial_fold():
"""Test for partial_fold
Assumes partial unfolding works and check that
refolding partially folded tensors results in
the original tensor.
"""
X = T.arange(24).reshape((3, 4, 2))
unfolded = T.tensor([[[ 0, 1, 2, 3, 4, 5, 6, 7],
[ 8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]],
[[ 0, 1, 2, 3, 4, 5, 6, 7],
[ 8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]],
[[ 0, 1, 2, 3, 4, 5, 6, 7],
[ 8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23]]])
folded = partial_fold(unfolded, 0, (3, 3, 4, 2), skip_begin=1)
for i in range(3):
T.assert_array_equal(folded[i], X)
shape = [3, 4, 5, 6]
X = T.tensor(np.random.random(shape))
for i in [0, 1]:
for mode in range(len(shape)-1):
unfolded = partial_unfold(X, mode=mode, skip_begin=i, skip_end=(1-i))
refolded = partial_fold(unfolded, mode=mode, shape=shape, skip_begin=i, skip_end=(1-i))
T.assert_array_equal(refolded, X)
# Test for raveled_tensor=True
for i in [0, 1]:
for mode in range(len(shape)-1):
unfolded = partial_unfold(X, mode=mode, skip_begin=i, skip_end=(1-i), ravel_tensors=True)
refolded = partial_fold(unfolded, mode=mode, shape=shape, skip_begin=i, skip_end=(1-i))
T.assert_array_equal(refolded, X)
def test_partial_tensor_to_vec():
"""Test for partial_tensor_to_vec """
X = np.arange(24).reshape((3, 4, 2))
n_samples = 3
###################################
# Samples are the first dimension #
###################################
tensor = T.tensor(np.concatenate([X[None, ...]+i for i in range(n_samples)]))
#we created here a tensor with 3 samples, each sample being similar to X
vectorised = partial_tensor_to_vec(tensor, skip_begin=1)
vec_X = tensor_to_vec(T.tensor(X))
for j in range(n_samples): # test for each sample
T.assert_array_equal(vectorised[j], vec_X+j)
##################################
# Samples are the last dimension #
##################################
tensor = T.tensor(np.concatenate([X[..., None]+i for i in range(n_samples)], axis=-1))
vectorised = partial_tensor_to_vec(tensor, skip_end=1, skip_begin=0)
vec_X = tensor_to_vec(T.tensor(X))
for j in range(n_samples): # test for each sample
T.assert_array_equal(vectorised.T[j], vec_X+j)
def test_partial_vec_to_tensor():
"""Test for partial_vec_to_tensor
"""
X = np.arange(24).reshape((3, 4, 2))
vectorised = T.tensor([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23],
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24],
[ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]])
folded = partial_vec_to_tensor(vectorised, (3, 3, 4, 2), skip_begin=1)
for i in range(3):
T.assert_array_equal(folded[i], X+i)
shape = [3, 4, 5, 6]
X = T.tensor(np.random.random(shape))
for i in [0, 1]:
vec = partial_tensor_to_vec(X, skip_begin=i, skip_end=(1-i))
ten = partial_vec_to_tensor(vec, shape=shape, skip_begin=i, skip_end=(1-i))
T.assert_array_equal(X, ten)
def test_partial_svd():
"""Test for partial_svd"""
sizes = [(100, 100), (100, 5), (10, 10), (5, 100)]
n_eigenvecs = [10, 4, 5, 4]
# Compare with sparse SVD
for s, n in zip(sizes, n_eigenvecs):
matrix = np.random.random(s)
fU, fS, fV = T.partial_svd(T.tensor(matrix), n_eigenvecs=n)
U, S, V = svds(matrix, k=n, which='LM')
U, S, V = U[:, ::-1], S[::-1], V[::-1, :]
T.assert_array_almost_equal(np.abs(S), T.abs(fS))
T.assert_array_almost_equal(np.abs(U), T.abs(fU))
T.assert_array_almost_equal(np.abs(V), T.abs(fV))
# Compare with standard SVD
sizes = [(100, 100), (100, 5), (10, 10), (10, 4), (5, 100)]
n_eigenvecs = [10, 4, 5, 4, 4]
for s, n in zip(sizes, n_eigenvecs):
matrix = np.random.random(s)
fU, fS, fV = T.partial_svd(T.tensor(matrix), n_eigenvecs=n)
U, S, V = svd(matrix)
U, S, V = U[:, :n], S[:n], V[:n, :]
# Test for SVD
T.assert_array_almost_equal(np.abs(S), T.abs(fS))
T.assert_array_almost_equal(np.abs(U), T.abs(fU))
T.assert_array_almost_equal(np.abs(V), T.abs(fV))
with T.assert_raises(ValueError):
tensor = T.tensor(np.random.random((3, 3, 3)))
T.partial_svd(tensor)

Computing file changes ...