Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cmu-ci-lab/mcspeckle
30 June 2024, 09:00:48 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
Revision c4ecf78f32558cba5e45ab0c43a0995a20f2c85b authored by igkiou on 05 September 2019, 11:00:35 UTC, committed by igkiou on 05 September 2019, 11:00:35 UTC
first commit
1 parent 8572b98
  • Files
  • Changes
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • c4ecf78f32558cba5e45ab0c43a0995a20f2c85b
    No releases to show
  • a850fae
  • /
  • code
  • /
  • MCfieldFourierQuadOnWave.m
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
  • snapshot
origin badgerevision badge
swh:1:rev:c4ecf78f32558cba5e45ab0c43a0995a20f2c85b
origin badgedirectory badge Iframe embedding
swh:1:dir:c2c21097b2a208e8b6d0e73d228d21bccfc96144
origin badgecontent badge Iframe embedding
swh:1:cnt:45bed8974b4f29fc5b45f7e871e9068668428e98
origin badgesnapshot badge
swh:1:snp:3a35cdb24ad67a89d2a1abf099040aff3c71b7b4

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: c4ecf78f32558cba5e45ab0c43a0995a20f2c85b authored by igkiou on 05 September 2019, 11:00:35 UTC
first commit
Tip revision: c4ecf78
MCfieldFourierQuadOnWave.m
function [u]=MCfield(sigt,albedo,box_min,box_max,l,v_max,v_stp,maxItr,lambda,doCBS,smpFlg,lmean0,Wl,vsign)
%MCFIELD MC rendering field algorithm
%
% render a speckle field for Nv viewings and Nl lights
%
% u=MCfield(sigt,albedo,box_min,box_max,l,v,is_ff_l,is_ff_v,maxItr,lambda,doCBS,smpFlg,sct_type,ampfunc,ampfunc0,lmean0)
%
% INPUT:
%     * 'sigt' - extinction coefficient.
%     * 'albedo' - chance to absorption event, number between 0 to 1. also
%     defined as sigs/sigt, where sigs is the scattering coefficient.
%     * 'box_min' - 2D or 3D vector for lower bound on box.
%     * 'box_max' - 2D or 3D vector for upper bound on box.
%     * 'l' - illumination direction or points 3xNl (for 3D) or 2xNl (for 
%     2D). can be defined also as 1xNl vector, in this case is interperated
%     as angles and converted to 2D vectors.
%     * 'v' - viewing directions 1xNv or 2xNv or 3xNv, directions or
%     points, defined the same as 'l'.
%     * 'is_ff_l' - true for illumination in far field, and false for 
%     illumination in near field.
%     * 'is_ff_v' - true for view in far field, and false for view in near 
%     field.
%     * 'maxItr' - number of iterations to run MC algorithm.
%     * 'lambda' - the wavelength.
%     * 'doCBS' - true for activating Coherent Backscattering.
%     * 'smpFlg' - sampling method for first particle. 1 for unifrom
%     distribted sampling, and 2 for exponential distribution sampling.
%     * 'sct_type' - scattering event type. 1 for isotropic, 2 for tabulated
%     amplitude function, 3 for Henyey-Greenstein (HG) function.
%     * 'ampfunc' - scattering function parameter. for amplitude function 
%     is a constructed table with the needed parameters (see
%     measuredFarField), for HG the g parameter.
%     * 'ampfunc0' - (optinal) scattering function for first scattering
%     event.
%     * 'lmean0' - (optional) direction of first scattering event
%
% OUTPUT:
%     * 'u' - rendered field in size of |Nv|x|Nl|

%% Check validity of some of the input


% get the dimensions size
if((numel(box_max) ~= 2 && numel(box_max) ~= 3) || ...
        (size(box_max,2) ~= 1) || (any(size(box_max) ~= size(box_min))))
    error('Invalid box size');
end

dim = size(box_min,1);

maxMultIters = 1e3;

Nl = size(l,2);
%Nv = size(v,2);

%% Prepare for algorithm

% Initiate output parameters


% first scattering event direction
if ~exist('lmean0','var')| isempty(lmean0)
    unmeanl = [0;0;1];
else
    unmeanl = lmean0;
end
meanl = unmeanl/norm(unmeanl);

if ~exist('vsign','var') %this input parameter indicates from which side of the phantom the viewing grid is located
   
    vsign=-1;
end

% Box size
box_w = box_max-box_min;






ff_sign=-2*(1)+1;


vbin_scl=1;
vrng_scl=1;%5;
theta_v0=[-v_max:v_stp/vbin_scl:v_max];
v_max=v_max*vrng_scl;
theta_v=[-v_max:v_stp/vbin_scl:v_max];



Nv=length(theta_v);
Nv0=length(theta_v0);


box_stp=lambda/(v_max*2+v_stp);

Nx=ceil(box_w(1)/box_stp/2)*2+1;
if(mod(Nv - Nx,2) == 1)
    Nx = Nx + 1;
end
box_w_n=Nx*box_stp;
box_min(1:2)=box_min(1:2)-(box_w_n-box_w(1))/2;
box_max(1:2)=box_max(1:2)+(box_w_n-box_w(1))/2;
box_w(1:2)=box_w_n;

[gx,gy]=ndgrid([box_min(1)+box_stp/2:box_stp:box_max(1)],[box_min(2)+box_stp/2:box_stp:box_max(2)]);


Nx_padd_size=max((Nv-Nx)/2,0);
Nv_padd_size=max((Nx-Nv)/2,0);
Nv0_padd_size=max((Nv-Nv0)/2,0);
Nva_padd_size=Nv0_padd_size+Nv_padd_size;

[vx,vy]=ndgrid(-theta_v,-theta_v);
% vz=-sqrt(1-vx.^2-vy.^2);
% vz=-vsign*sqrt(1-vx.^2-vy.^2);
vz=vsign*sqrt(1-vx.^2-vy.^2);



vx0=vx(1+Nv0_padd_size:end-Nv0_padd_size,1+Nv0_padd_size:end-Nv0_padd_size);
vy0=vy(1+Nv0_padd_size:end-Nv0_padd_size,1+Nv0_padd_size:end-Nv0_padd_size);
vz0=vz(1+Nv0_padd_size:end-Nv0_padd_size,1+Nv0_padd_size:end-Nv0_padd_size);


z_bin=lambda/max(1-abs(vz(:)))/5;
z_bin=z_bin/2;%/5;
gz=[box_min(end):z_bin:box_max(end),box_max(end)];
%Nz=length(zL);

Nz=length(gz);


diratt0=1./abs(vz0).*(vz0<0);
idiratt0=1./abs(vz0).*(vz0>0);   

l_diratt=1./abs(l(end)).*(l(end)>0);
l_idiratt=1./abs(l(end)).*(l(end)<0);   

%zexp0=(-2*pi*i/lambda*vz0-sigt/2*diratt0);
zexp0=(2*pi*1i/lambda*vz0*vsign-sigt/2*(diratt0-idiratt0));


%boxexp0=exp(-sigt/2*(-box_min(end)).*diratt0);

boxexp0=exp(-sigt/2*(-box_min(end).*diratt0+box_max(end).*idiratt0));
boxexp0=boxexp0.*exp(2*pi*1i/lambda*(-box_min(end).*(vz0<0).*vz0+box_max(end).*(vz0>0).*vz0 ));


% threshold to begin kill particles with low weight
killThr=0.2;

ExpOD=sigt*box_w(end)+1;
xL=zeros(dim,round(maxItr*ExpOD));
x1L=zeros(dim,round(maxItr*ExpOD));

pxL=zeros(1,size(xL,2));
pathL=zeros(1,size(xL,2));
c_itr=0;
%% Begin the main loop
for itr=1:maxItr
   
    % Sample the first scatter
    % x: first scattering point
    % px: probability by which first point was sampled. Needed so that
    % importance sampling integration is weighted properly
    switch smpFlg
        case 1
            % uniform distribution
            x=rand(dim,1).*(box_w)+box_min; px=1;
        case 2
            % exponential distribution
            [x,px]=expSmpX(box_min,box_max,unmeanl,sigt);
    end
      
        x1=x;
  
        w=randn(dim,1); w=w/norm(w);
        w0p=1/sqrt(2^(dim-1)*pi);
        
        weight=albedo;
        p_len=0;
        while 1
            p_len=p_len+1;
            c_itr=c_itr+1;
            xL(:,c_itr)=x;
            x1L(:,c_itr)=x1;
            pxL(:,c_itr)=sqrt(weight./px)*exp(2*pi*1i*rand);
            if (doCBS)&(p_len>1), pxL(:,c_itr)= 1/sqrt(2)*pxL(:,c_itr); end
            pathL(:,c_itr)=p_len;
            
            
  % advance to the next scattering event
        d=-log(-rand+1)/(sigt);
        x=x+d*w;

        % move to the next particle if the next scattering event is outside
        % the box
        if(max(x>box_max) || max(x<box_min))
            break
        end

        % albedo intensity reduction. If the intensity is too low, it is
        % possible that the particle will be killed
        if weight<killThr
            if rand>albedo
                break
            end
        else
            weight=weight*albedo;
        end

        % Sample new scatteing direction
        ow=w;
        w=randn(dim,1);  w=w/norm(w); %smpampfunc_general(ow, sct_type,ampfunc);
        
      
        
        end
end
maxItr=c_itr;
xL=xL(:,1:maxItr);
x1L=x1L(:,1:maxItr);
pxL=pxL(:,1:maxItr);
pathL=pathL(:,1:maxItr);
 



          

u=zeros(Nv0,Nv0);

for tt=1:2
    
    if (tt==2)
        if ~doCBS
            continue
        end
        txL=xL;
        xL=x1L; x1L=txL;
    end
    
    [sv,si]=sort(x1L(end,:));
    xL=xL(:,si);
    pxL=pxL(:,si);
    x1L=x1L(:,si);
    pathL=pathL(:,si);
    
    
    
    z_ind_max=0;
    plane_count=zeros(1,Nz-1);
    time_count=zeros(1,Nz-1);
    for j1=1:Nz-1
%         j1/Nz
        c_itr=z_ind_max+1;
        z_max=gz(j1+1);
        while (c_itr<=maxItr)& (x1L(end,c_itr)<z_max)
            c_itr=c_itr+1;
        end
        z_ind_min=z_ind_max+1;
        z_ind_max=c_itr-1;
        
        if z_ind_max<z_ind_min
            continue
        end

        jj=[z_ind_min:z_ind_max];
        tz=mean(gz(j1:j1+1));
        plane_count(j1)=length(jj);
            
        xy_inds=round((x1L(1:2,jj)-[gx(1);gy(1)])/box_stp)+1;
        inds=xy_inds(1,:)+(xy_inds(2,:)-1)*Nx;
       
%         twl= (Wl(:).')*exp(2*pi*i/lambda*l'*xL(:,jj));
%         twl= (Wl(:).')*exp(vsign*2*pi*1i/lambda*l'*xL(:,jj));
        
        twl = zeros(1,numel(jj));
        jj_iter = 1;
        curr_idx = 1;
        max_idx = 0;
        while(max_idx < numel(jj))
            disp([num2str(j1),'/',num2str(Nz-1),': ', ...
                num2str(round(curr_idx/numel(jj) * 100)),'%']);
            max_idx = min([jj_iter * maxMultIters,numel(jj)]);
            twl(curr_idx:max_idx) = ...
                (Wl(:).')*exp(vsign*2*pi*1i/lambda*l'*xL(:,curr_idx:max_idx));
            curr_idx = max_idx + 1;
            jj_iter = jj_iter + 1;
        end
        
        atl=exp(-sigt/2*((xL(end,jj)-box_min(end)).*l_diratt+(box_max(end)-xL(end,jj)).*l_idiratt));
        %parfor j2=1:Nl
            
            u_xy=zeros(Nx,Nx);
            for j3=1:length(jj)
               %u_xy(inds(j3))=u_xy(inds(j3))+pxL(1,jj(j3)).*exp(-2*pi*i/lambda*(-x1L(3,jj(j3))+tz)).*exp(2*pi*i/lambda*l(:,j2)'*xL(:,jj(j3))-sigt/2*((xL(end,jj(j3))-box_min(end)).*l_diratt+(box_max(end)-xL(end,jj(j3))).*l_idiratt));
%                u_xy(inds(j3))=u_xy(inds(j3))+pxL(1,jj(j3)).*exp(-2*pi*1i/lambda*(-x1L(3,jj(j3))+tz)).*twl(j3)*atl(j3);
               u_xy(inds(j3))=u_xy(inds(j3))+pxL(1,jj(j3)).*exp(vsign*2*pi*1i/lambda*(-x1L(3,jj(j3))+tz)).*twl(j3)*atl(j3);
          
            
            
            end
            

            u_xy=padarray(u_xy,[1,1]*Nx_padd_size,'both');

            tfu=fliplr(flipud(fftshift(fft2(ifftshift((u_xy))))));

            tfu=tfu(Nva_padd_size+1:end-Nva_padd_size,Nva_padd_size+1:end-Nva_padd_size);
            tfu=tfu.*exp(zexp0*tz);
            u=u+tfu;
          
        %end
        
    end
    
    
end


u=u.*boxexp0;




u=u(1:vbin_scl:end,1:vbin_scl:end,:);



%% Normalization
V=prod(box_w);
u=u*sqrt(1/maxItr*V*sigt);

The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API