https://github.com/torvalds/linux
Revision c5c9f25b98a568451d665afe4aeefe17bf9f2995 authored by Nishanth Aravamudan on 24 November 2015, 16:55:05 UTC, committed by Jens Axboe on 24 November 2015, 22:05:51 UTC
We received a bug report recently when DDW (64-bit direct DMA on Power)
is not enabled for NVMe devices. In that case, we fall back to 32-bit
DMA via the IOMMU, which is always done via 4K TCEs (Translation Control
Entries).

The NVMe device driver, though, assumes that the DMA alignment for the
PRP entries will match the device's page size, and that the DMA aligment
matches the kernel's page aligment. On Power, the the IOMMU page size,
as mentioned above, can be 4K, while the device can have a page size of
8K, while the kernel has a page size of 64K. This eventually trips the
BUG_ON in nvme_setup_prps(), as we have a 'dma_len' that is a multiple
of 4K but not 8K (e.g., 0xF000).

In this particular case of page sizes, we clearly want to use the
IOMMU's page size in the driver. And generally, the NVMe driver in this
function should be using the IOMMU's page size for the default device
page size, rather than the kernel's page size. There is not currently an
API to obtain the IOMMU's page size across all architectures and in the
interest of a stop-gap fix to this functional issue, default the NVMe
device page size to 4K, with the intent of adding such an API and
implementation across all architectures in the next merge window.

With the functionally equivalent v3 of this patch, our hardware test
exerciser survives when using 32-bit DMA; without the patch, the kernel
will BUG within a few minutes.

Signed-off-by: Nishanth Aravamudan <nacc at linux.vnet.ibm.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
1 parent 6ffeba9
Raw File
Tip revision: c5c9f25b98a568451d665afe4aeefe17bf9f2995 authored by Nishanth Aravamudan on 24 November 2015, 16:55:05 UTC
NVMe: default to 4k device page size
Tip revision: c5c9f25
swap_cgroup.c
#include <linux/swap_cgroup.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>

#include <linux/swapops.h> /* depends on mm.h include */

static DEFINE_MUTEX(swap_cgroup_mutex);
struct swap_cgroup_ctrl {
	struct page **map;
	unsigned long length;
	spinlock_t	lock;
};

static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];

struct swap_cgroup {
	unsigned short		id;
};
#define SC_PER_PAGE	(PAGE_SIZE/sizeof(struct swap_cgroup))

/*
 * SwapCgroup implements "lookup" and "exchange" operations.
 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
 * against SwapCache. At swap_free(), this is accessed directly from swap.
 *
 * This means,
 *  - we have no race in "exchange" when we're accessed via SwapCache because
 *    SwapCache(and its swp_entry) is under lock.
 *  - When called via swap_free(), there is no user of this entry and no race.
 * Then, we don't need lock around "exchange".
 *
 * TODO: we can push these buffers out to HIGHMEM.
 */

/*
 * allocate buffer for swap_cgroup.
 */
static int swap_cgroup_prepare(int type)
{
	struct page *page;
	struct swap_cgroup_ctrl *ctrl;
	unsigned long idx, max;

	ctrl = &swap_cgroup_ctrl[type];

	for (idx = 0; idx < ctrl->length; idx++) {
		page = alloc_page(GFP_KERNEL | __GFP_ZERO);
		if (!page)
			goto not_enough_page;
		ctrl->map[idx] = page;
	}
	return 0;
not_enough_page:
	max = idx;
	for (idx = 0; idx < max; idx++)
		__free_page(ctrl->map[idx]);

	return -ENOMEM;
}

static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
					struct swap_cgroup_ctrl **ctrlp)
{
	pgoff_t offset = swp_offset(ent);
	struct swap_cgroup_ctrl *ctrl;
	struct page *mappage;
	struct swap_cgroup *sc;

	ctrl = &swap_cgroup_ctrl[swp_type(ent)];
	if (ctrlp)
		*ctrlp = ctrl;

	mappage = ctrl->map[offset / SC_PER_PAGE];
	sc = page_address(mappage);
	return sc + offset % SC_PER_PAGE;
}

/**
 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
 * @ent: swap entry to be cmpxchged
 * @old: old id
 * @new: new id
 *
 * Returns old id at success, 0 at failure.
 * (There is no mem_cgroup using 0 as its id)
 */
unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
					unsigned short old, unsigned short new)
{
	struct swap_cgroup_ctrl *ctrl;
	struct swap_cgroup *sc;
	unsigned long flags;
	unsigned short retval;

	sc = lookup_swap_cgroup(ent, &ctrl);

	spin_lock_irqsave(&ctrl->lock, flags);
	retval = sc->id;
	if (retval == old)
		sc->id = new;
	else
		retval = 0;
	spin_unlock_irqrestore(&ctrl->lock, flags);
	return retval;
}

/**
 * swap_cgroup_record - record mem_cgroup for this swp_entry.
 * @ent: swap entry to be recorded into
 * @id: mem_cgroup to be recorded
 *
 * Returns old value at success, 0 at failure.
 * (Of course, old value can be 0.)
 */
unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
{
	struct swap_cgroup_ctrl *ctrl;
	struct swap_cgroup *sc;
	unsigned short old;
	unsigned long flags;

	sc = lookup_swap_cgroup(ent, &ctrl);

	spin_lock_irqsave(&ctrl->lock, flags);
	old = sc->id;
	sc->id = id;
	spin_unlock_irqrestore(&ctrl->lock, flags);

	return old;
}

/**
 * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
 * @ent: swap entry to be looked up.
 *
 * Returns ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
 */
unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
{
	return lookup_swap_cgroup(ent, NULL)->id;
}

int swap_cgroup_swapon(int type, unsigned long max_pages)
{
	void *array;
	unsigned long array_size;
	unsigned long length;
	struct swap_cgroup_ctrl *ctrl;

	if (!do_swap_account)
		return 0;

	length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
	array_size = length * sizeof(void *);

	array = vzalloc(array_size);
	if (!array)
		goto nomem;

	ctrl = &swap_cgroup_ctrl[type];
	mutex_lock(&swap_cgroup_mutex);
	ctrl->length = length;
	ctrl->map = array;
	spin_lock_init(&ctrl->lock);
	if (swap_cgroup_prepare(type)) {
		/* memory shortage */
		ctrl->map = NULL;
		ctrl->length = 0;
		mutex_unlock(&swap_cgroup_mutex);
		vfree(array);
		goto nomem;
	}
	mutex_unlock(&swap_cgroup_mutex);

	return 0;
nomem:
	printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
	printk(KERN_INFO
		"swap_cgroup can be disabled by swapaccount=0 boot option\n");
	return -ENOMEM;
}

void swap_cgroup_swapoff(int type)
{
	struct page **map;
	unsigned long i, length;
	struct swap_cgroup_ctrl *ctrl;

	if (!do_swap_account)
		return;

	mutex_lock(&swap_cgroup_mutex);
	ctrl = &swap_cgroup_ctrl[type];
	map = ctrl->map;
	length = ctrl->length;
	ctrl->map = NULL;
	ctrl->length = 0;
	mutex_unlock(&swap_cgroup_mutex);

	if (map) {
		for (i = 0; i < length; i++) {
			struct page *page = map[i];
			if (page)
				__free_page(page);
		}
		vfree(map);
	}
}
back to top