Revision c6d4fdb44a004f804c489c8cb1739ba17d0b0939 authored by TUNA Caglayan on 20 October 2021, 10:09:49 UTC, committed by TUNA Caglayan on 20 October 2021, 10:09:49 UTC
1 parent 2b16764
Raw File
_nn_cp.py
import numpy as np
import warnings
import tensorly as tl
from ._base_decomposition import DecompositionMixin
from ..random import random_cp
from ..base import unfold
from ..tenalg.proximal import soft_thresholding,hals_nnls
from ..cp_tensor import (cp_to_tensor, CPTensor,
                         unfolding_dot_khatri_rao, cp_norm,
                         cp_normalize, validate_cp_rank)

# Authors: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>
#          Chris Swierczewski <csw@amazon.com>
#          Sam Schneider <samjohnschneider@gmail.com>
#          Aaron Meurer <asmeurer@gmail.com>
#          Aaron Meyer <tensorly@ameyer.me>
#          Jeremy Cohen <jeremy.cohen@irisa.fr>
#          Axel Marmoret <axel.marmoret@inria.fr>
#          Caglayan TUna <caglayantun@gmail.com>

# License: BSD 3 clause


def make_svd_non_negative(tensor, U, S, V, nntype):
    """ Use NNDSVD method to transform SVD results into a non-negative form. This
    method leads to more efficient solving with NNMF [1].

    Parameters
    ----------
    tensor : tensor being decomposed
    U, S, V: SVD factorization results
    nntype : {'nndsvd', 'nndsvda'}
        Whether to fill small values with 0.0 (nndsvd), or the tensor mean (nndsvda, default).

    [1]: Boutsidis & Gallopoulos. Pattern Recognition, 41(4): 1350-1362, 2008.
    """

    # NNDSVD initialization
    W = tl.zeros_like(U)
    H = tl.zeros_like(V)

    # The leading singular triplet is non-negative
    # so it can be used as is for initialization.
    W = tl.index_update(W, tl.index[:, 0], tl.sqrt(S[0]) * tl.abs(U[:, 0]))
    H = tl.index_update(H, tl.index[0, :], tl.sqrt(S[0]) * tl.abs(V[0, :]))

    for j in range(1, tl.shape(U)[1]):
        x, y = U[:, j], V[j, :]

        # extract positive and negative parts of column vectors
        x_p, y_p = tl.clip(x, a_min=0.0), tl.clip(y, a_min=0.0)
        x_n, y_n = tl.abs(tl.clip(x, a_max=0.0)), tl.abs(tl.clip(y, a_max=0.0))

        # and their norms
        x_p_nrm, y_p_nrm = tl.norm(x_p), tl.norm(y_p)
        x_n_nrm, y_n_nrm = tl.norm(x_n), tl.norm(y_n)

        m_p, m_n = x_p_nrm * y_p_nrm, x_n_nrm * y_n_nrm

        # choose update
        if m_p > m_n:
            u = x_p / x_p_nrm
            v = y_p / y_p_nrm
            sigma = m_p
        else:
            u = x_n / x_n_nrm
            v = y_n / y_n_nrm
            sigma = m_n

        lbd = tl.sqrt(S[j] * sigma)
        W = tl.index_update(W, tl.index[:, j], lbd * u)
        H = tl.index_update(H, tl.index[j, :], lbd * v)

    # After this point we no longer need H
    eps = tl.eps(tensor.dtype)

    if nntype == "nndsvd":
        W = soft_thresholding(W, eps)
    elif nntype == "nndsvda":
        avg = tl.mean(tensor)
        W = tl.where(W < eps, tl.ones(tl.shape(W), **tl.context(W)) * avg, W)
    else:
        raise ValueError(
            'Invalid nntype parameter: got %r instead of one of %r' %
            (nntype, ('nndsvd', 'nndsvda')))

    return W


def initialize_nn_cp(tensor, rank, init='svd', svd='numpy_svd', random_state=None,
                     normalize_factors=False, nntype='nndsvda'):
    r"""Initialize factors used in `parafac`.

    The type of initialization is set using `init`. If `init == 'random'` then
    initialize factor matrices using `random_state`. If `init == 'svd'` then
    initialize the `m`th factor matrix using the `rank` left singular vectors
    of the `m`th unfolding of the input tensor.

    Parameters
    ----------
    tensor : ndarray
    rank : int
    init : {'svd', 'random'}, optional
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    nntype : {'nndsvd', 'nndsvda'}
        Whether to fill small values with 0.0 (nndsvd), or the tensor mean (nndsvda, default).

    Returns
    -------
    factors : CPTensor
        An initial cp tensor.

    """
    rng = tl.check_random_state(random_state)

    if init == 'random':
        kt = random_cp(tl.shape(tensor), rank, normalise_factors=False, random_state=rng, **tl.context(tensor))

    elif init == 'svd':
        try:
            svd_fun = tl.SVD_FUNS[svd]
        except KeyError:
            message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
                svd, tl.get_backend(), tl.SVD_FUNS)
            raise ValueError(message)

        factors = []
        for mode in range(tl.ndim(tensor)):
            U, S, V = svd_fun(unfold(tensor, mode), n_eigenvecs=rank)

            # Apply nnsvd to make non-negative
            U = make_svd_non_negative(tensor, U, S, V, nntype)

            if tensor.shape[mode] < rank:
                # TODO: this is a hack but it seems to do the job for now
                random_part = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
                U = tl.concatenate([U, random_part], axis=1)

            factors.append(U[:, :rank])

        kt = CPTensor((None, factors))

    # If the initialisation is a precomputed decomposition, we double check its validity and return it
    elif isinstance(init, (tuple, list, CPTensor)):
        # TODO: Test this
        try:
            kt = CPTensor(init)
        except ValueError:
            raise ValueError(
                'If initialization method is a mapping, then it must '
                'be possible to convert it to a CPTensor instance'
            )
        return kt
    else:
        raise ValueError('Initialization method "{}" not recognized'.format(init))

    # Make decomposition feasible by taking the absolute value of all factor matrices
    kt.factors = [tl.abs(f) for f in kt[1]]

    if normalize_factors:
        kt = cp_normalize(kt)

    return kt


def non_negative_parafac(tensor, rank, n_iter_max=100, init='svd', svd='numpy_svd',
                         tol=10e-7, random_state=None, verbose=0, normalize_factors=False,
                         return_errors=False, mask=None, cvg_criterion='abs_rec_error',
                         fixed_modes=None):
    """
    Non-negative CP decomposition

    Uses multiplicative updates, see [2]_

    Parameters
    ----------
    tensor : ndarray
    rank   : int
            number of components
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity
    fixed_modes : list, default is None
        A list of modes for which the initial value is not modified.
        The last mode cannot be fixed due to error computation.

    Returns
    -------
    factors : ndarray list
            list of positive factors of the CP decomposition
            element `i` is of shape ``(tensor.shape[i], rank)``

    References
    ----------
    .. [2] Amnon Shashua and Tamir Hazan,
       "Non-negative tensor factorization with applications to statistics and computer vision",
       In Proceedings of the International Conference on Machine Learning (ICML),
       pp 792-799, ICML, 2005
    """
    epsilon = tl.eps(tensor.dtype)
    rank = validate_cp_rank(tl.shape(tensor), rank=rank)

    if mask is not None and init == "svd":
        message = "Masking occurs after initialization. Therefore, random initialization is recommended."
        warnings.warn(message, Warning)

    weights, factors = initialize_nn_cp(tensor, rank, init=init, svd=svd,
                                        random_state=random_state,
                                        normalize_factors=normalize_factors)
    rec_errors = []
    norm_tensor = tl.norm(tensor, 2)
    
    if fixed_modes is None:
        fixed_modes = []

    if tl.ndim(tensor) - 1 in fixed_modes:
        warnings.warn('You asked for fixing the last mode, which is not supported while tol is fixed.\n The last mode will not be fixed. Consider using tl.moveaxis()')
        fixed_modes.remove(tl.ndim(tensor) - 1)
    modes_list = [mode for mode in range(tl.ndim(tensor)) if mode not in fixed_modes]

    for iteration in range(n_iter_max):
        if verbose > 1:
            print("Starting iteration", iteration + 1)
        for mode in modes_list:
            if verbose > 1:
                print("Mode", mode, "of", tl.ndim(tensor))

            accum = 1
            # khatri_rao(factors).tl.dot(khatri_rao(factors))
            # simplifies to multiplications
            sub_indices = [i for i in range(len(factors)) if i != mode]
            for i, e in enumerate(sub_indices):
                if i:
                    accum *= tl.dot(tl.transpose(factors[e]), factors[e])
                else:
                    accum = tl.dot(tl.transpose(factors[e]), factors[e])

            if mask is not None:
                tensor = tensor * mask + tl.cp_to_tensor((None, factors), mask=1 - mask)

            mttkrp = unfolding_dot_khatri_rao(tensor, (None, factors), mode)

            numerator = tl.clip(mttkrp, a_min=epsilon, a_max=None)
            denominator = tl.dot(factors[mode], accum)
            denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
            factor = factors[mode] * numerator / denominator

            factors[mode] = factor

        if normalize_factors:
            weights, factors = cp_normalize((weights, factors))

        if tol:
            # ||tensor - rec||^2 = ||tensor||^2 + ||rec||^2 - 2*<tensor, rec>
            factors_norm = cp_norm((weights, factors))

            # mttkrp and factor for the last mode. This is equivalent to the
            # inner product <tensor, factorization>
            iprod = tl.sum(tl.sum(mttkrp * factor, axis=0) * weights)
            rec_error = tl.sqrt(tl.abs(norm_tensor**2 + factors_norm**2 - 2 * iprod)) / norm_tensor
            rec_errors.append(rec_error)
            if iteration >= 1:
                rec_error_decrease = rec_errors[-2] - rec_errors[-1]

                if verbose:
                    print("iteration {}, reconstraction error: {}, decrease = {}".format(iteration, rec_error, rec_error_decrease))

                if cvg_criterion == 'abs_rec_error':
                    stop_flag = abs(rec_error_decrease) < tol
                elif cvg_criterion == 'rec_error':
                    stop_flag = rec_error_decrease < tol
                else:
                    raise TypeError("Unknown convergence criterion")

                if stop_flag:
                    if verbose:
                        print("PARAFAC converged after {} iterations".format(iteration))
                    break
            else:
                if verbose:
                    print('reconstruction error={}'.format(rec_errors[-1]))

    cp_tensor = CPTensor((weights, factors))

    if return_errors:
        return cp_tensor, rec_errors
    else:
        return cp_tensor


def non_negative_parafac_hals(tensor, rank, n_iter_max=100, init="svd", svd='numpy_svd', tol=10e-8,
                              sparsity_coefficients=None, fixed_modes=None, nn_modes='all', exact=False,
                              verbose=False, return_errors=False, cvg_criterion='abs_rec_error'):
    """
    Non-negative CP decomposition via HALS

    Uses Hierarchical ALS (Alternating Least Squares) which updates each factor column-wise (one column at a time while keeping all other columns fixed), see [1]_

    Parameters
    ----------
    tensor : ndarray
    rank   : int
            number of components
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
          Default: 1e-8
    sparsity_coefficients: array of float (of length the number of modes)
        The sparsity coefficients on each factor.
        If set to None, the algorithm is computed without sparsity
        Default: None,
    fixed_modes: array of integers (between 0 and the number of modes)
        Has to be set not to update a factor, 0 and 1 for U and V respectively
        Default: None
    nn_modes: None, 'all' or array of integers (between 0 and the number of modes)
        Used to specify which modes to impose non-negativity constraints on.
        If 'all', then non-negativity is imposed on all modes.
        Default: 'all'
    exact: If it is True, the algorithm gives a results with high precision but it needs high computational cost.
        If it is False, the algorithm gives an approximate solution
        Default: False
    verbose: boolean
        Indicates whether the algorithm prints the successive
        reconstruction errors or not
        Default: False
    return_errors: boolean
        Indicates whether the algorithm should return all reconstruction errors
        and computation time of each iteration or not
        Default: False
    cvg_criterion : {'abs_rec_error', 'rec_error'}, optional
        Stopping criterion for ALS, works if `tol` is not None.
        If 'rec_error',  ALS stops at current iteration if ``(previous rec_error - current rec_error) < tol``.
        If 'abs_rec_error', ALS terminates when `|previous rec_error - current rec_error| < tol`.
    sparsity : float or int

    Returns
    -------
    factors : ndarray list
            list of positive factors of the CP decomposition
            element `i` is of shape ``(tensor.shape[i], rank)``
    errors: list
        A list of reconstruction errors at each iteration of the algorithm.

    References
    ----------
    .. [1]: N. Gillis and F. Glineur, Accelerated Multiplicative Updates and
       Hierarchical ALS Algorithms for Nonnegative Matrix Factorization,
       Neural Computation 24 (4): 1085-1105, 2012.
    """

    weights, factors = initialize_nn_cp(tensor, rank, init=init, svd=svd,
                                        random_state=None,
                                        normalize_factors=False)

    norm_tensor = tl.norm(tensor, 2)

    n_modes = tl.ndim(tensor)
    if sparsity_coefficients is None or isinstance(sparsity_coefficients, float):
        sparsity_coefficients = [sparsity_coefficients] * n_modes

    if fixed_modes is None:
        fixed_modes = []

    if nn_modes == 'all':
        nn_modes = set(range(n_modes))
    elif nn_modes is None:
        nn_modes = set()

    # Avoiding errors
    for fixed_value in fixed_modes:
        sparsity_coefficients[fixed_value] = None

    for mode in range(n_modes):
        if sparsity_coefficients[mode] is not None:
            warnings.warn("Sparsity coefficient is ignored in unconstrained modes.")
    # Generating the mode update sequence
    modes = [mode for mode in range(n_modes) if mode not in fixed_modes]

    # initialisation - declare local varaibles
    rec_errors = []

    # Iteratation
    for iteration in range(n_iter_max):
        # One pass of least squares on each updated mode
        for mode in modes:

            # Computing Hadamard of cross-products
            pseudo_inverse = tl.tensor(tl.ones((rank, rank)), **tl.context(tensor))
            for i, factor in enumerate(factors):
                if i != mode:
                    pseudo_inverse = pseudo_inverse * tl.dot(tl.transpose(factor), factor)

            if not iteration and weights is not None:
                # Take into account init weights
                mttkrp = unfolding_dot_khatri_rao(tensor, (weights, factors), mode)
            else:
                mttkrp = unfolding_dot_khatri_rao(tensor, (None, factors), mode)

            if mode in nn_modes:
                # Call the hals resolution with nnls, optimizing the current mode
                nn_factor, _, _, _ = hals_nnls(tl.transpose(mttkrp), pseudo_inverse, tl.transpose(factors[mode]),
                                            n_iter_max=100, sparsity_coefficient=sparsity_coefficients[mode],
                                            exact=exact)
                factors[mode] = tl.transpose(nn_factor)
            else:
                factor = tl.solve(tl.transpose(pseudo_inverse), tl.transpose(mttkrp))
                factors[mode] = tl.transpose(factor)
        if tol:
            factors_norm = cp_norm((weights, factors))
            iprod = tl.sum(tl.sum(mttkrp * factors[-1], axis=0) * weights)
            rec_error = tl.sqrt(tl.abs(norm_tensor**2 + factors_norm**2 - 2 * iprod)) / norm_tensor
            rec_errors.append(rec_error)
            if iteration >= 1:
                rec_error_decrease = rec_errors[-2] - rec_errors[-1]

                if verbose:
                    print("iteration {}, reconstruction error: {}, decrease = {}".format(iteration, rec_error, rec_error_decrease))

                if cvg_criterion == 'abs_rec_error':
                    stop_flag = abs(rec_error_decrease) < tol
                elif cvg_criterion == 'rec_error':
                    stop_flag = rec_error_decrease < tol
                else:
                    raise TypeError("Unknown convergence criterion")

                if stop_flag:
                    if verbose:
                        print("PARAFAC converged after {} iterations".format(iteration))
                    break
            else:
                if verbose:
                    print('reconstruction error={}'.format(rec_errors[-1]))

    cp_tensor = CPTensor((weights, factors))
    if return_errors:
        return cp_tensor, rec_errors
    else:
        return cp_tensor


class CP_NN(DecompositionMixin):
    """
    Non-Negative Candecomp-Parafac decomposition via Alternating-Least Square

        Computes a rank-`rank` decomposition of `tensor` [1]_ such that,

            ``tensor = [|weights; factors[0], ..., factors[-1] |]``.

        Parameters
        ----------
        tensor : ndarray
        rank  : int
            Number of components.
        n_iter_max : int
            Maximum number of iteration
        init : {'svd', 'random'}, optional
            Type of factor matrix initialization. See `initialize_factors`.
        svd : str, default is 'numpy_svd'
            function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
        normalize_factors : if True, aggregate the weights of each factor in a 1D-tensor
            of shape (rank, ), which will contain the norms of the factors
        tol : float, optional
            (Default: 1e-6) Relative reconstruction error tolerance. The
            algorithm is considered to have found the global minimum when the
            reconstruction error is less than `tol`.
        random_state : {None, int, np.random.RandomState}
        verbose : int, optional
            Level of verbosity
        return_errors : bool, optional
            Activate return of iteration errors
        mask : ndarray
            array of booleans with the same shape as ``tensor`` should be 0 where
            the values are missing and 1 everywhere else. Note:  if tensor is
            sparse, then mask should also be sparse with a fill value of 1 (or
            True). Allows for missing values [2]_
        cvg_criterion : {'abs_rec_error', 'rec_error'}, optional
            Stopping criterion for ALS, works if `tol` is not None.
            If 'rec_error',  ALS stops at current iteration if (previous rec_error - current rec_error) < tol.
            If 'abs_rec_error', ALS terminates when |previous rec_error - current rec_error| < tol.
        sparsity : float or int
            If `sparsity` is not None, we approximate tensor as a sum of low_rank_component and sparse_component, where low_rank_component = cp_to_tensor((weights, factors)). `sparsity` denotes desired fraction or number of non-zero elements in the sparse_component of the `tensor`.
        fixed_modes : list, default is None
            A list of modes for which the initial value is not modified.
            The last mode cannot be fixed due to error computation.
        svd_mask_repeats: int
            If using a tensor with masked values, this initializes using SVD multiple times to
            remove the effect of these missing values on the initialization.

        Returns
        -------
        CPTensor : (weight, factors)
            * weights : 1D array of shape (rank, )
                all ones if normalize_factors is False (default),
                weights of the (normalized) factors otherwise
            * factors : List of factors of the CP decomposition element `i` is of shape
                (tensor.shape[i], rank)
            * sparse_component : nD array of shape tensor.shape. Returns only if `sparsity` is not None.

        errors : list
            A list of reconstruction errors at each iteration of the algorithms.

        References
        ----------
        .. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
        SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.

        .. [2] Tomasi, Giorgio, and Rasmus Bro. "PARAFAC and missing values."
                Chemometrics and Intelligent Laboratory Systems 75.2 (2005): 163-180.

        .. [3] R. Bro, "Multi-Way Analysis in the Food Industry: Models, Algorithms, and
                Applications", PhD., University of Amsterdam, 1998
    """

    def __init__(self, rank, n_iter_max=100, init='svd', svd='numpy_svd',
                 tol=10e-7, random_state=None, verbose=0, normalize_factors=False,
                 mask=None, cvg_criterion='abs_rec_error',
                 fixed_modes=None):
        self.n_iter_max = n_iter_max
        self.init = init
        self.svd = svd
        self.tol = tol
        self.random_state = random_state
        self.verbose = verbose
        self.normalize_factors = normalize_factors
        self.mask = mask
        self.cvg_criterion = cvg_criterion
        self.fixed_modes = fixed_modes

    def fit_transform(self, tensor):
        """Decompose an input tensor

        Parameters
        ----------
        tensor : tensorly tensor
            input tensor to decompose

        Returns
        -------
        CPTensor
            decomposed tensor
        """

        cp_tensor, errors = non_negative_parafac(
            tensor, 
            n_iter_max=self.n_iter_max,
            init=self.init,
            svd=self.svd,
            tol=self.tol,
            random_state=self.random_state,
            verbose=self.verbose,
            normalize_factors=self.normalize_factors,
            mask=self.mask,
            cvg_criterion=self.cvg_criterion,
            fixed_modes=self.fixed_modes,
            return_errors=True,
        )

        self.decomposition_ = cp_tensor
        self.errors_ = errors
        return self.decomposition_

    def __repr__(self):
        return f'Rank-{self.rank} Non-Negative CP decomposition.'


class CP_NN_HALS(DecompositionMixin):
    """
    Non-Negative Candecomp-Parafac decomposition via Alternating-Least Square

    Computes a rank-`rank` decomposition of `tensor` [1]_ such that::

            ``tensor = [|weights; factors[0], ..., factors[-1] |]``.

    Parameters
    ----------
    tensor : ndarray
    rank  : int
        Number of components.
    n_iter_max : int
        Maximum number of iteration
    init : {'svd', 'random'}, optional
        Type of factor matrix initialization. See `initialize_factors`.
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    normalize_factors : if True, aggregate the weights of each factor in a 1D-tensor
        of shape (rank, ), which will contain the norms of the factors
    tol : float, optional
        (Default: 1e-6) Relative reconstruction error tolerance. The
        algorithm is considered to have found the global minimum when the
        reconstruction error is less than `tol`.
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        Level of verbosity
    return_errors : bool, optional
        Activate return of iteration errors
    mask : ndarray
        array of booleans with the same shape as ``tensor`` should be 0 where
        the values are missing and 1 everywhere else. Note:  if tensor is
        sparse, then mask should also be sparse with a fill value of 1 (or
        True). Allows for missing values [2]_
    cvg_criterion : {'abs_rec_error', 'rec_error'}, optional
        Stopping criterion for ALS, works if `tol` is not None.
        If 'rec_error',  ALS stops at current iteration if (previous rec_error - current rec_error) < tol.
        If 'abs_rec_error', ALS terminates when |previous rec_error - current rec_error| < tol.
    sparsity : float or int
        If `sparsity` is not None, we approximate tensor as a sum of low_rank_component and sparse_component, where low_rank_component = cp_to_tensor((weights, factors)). `sparsity` denotes desired fraction or number of non-zero elements in the sparse_component of the `tensor`.
    fixed_modes : list, default is None
        A list of modes for which the initial value is not modified.
        The last mode cannot be fixed due to error computation.
    svd_mask_repeats: int
        If using a tensor with masked values, this initializes using SVD multiple times to
        remove the effect of these missing values on the initialization.

    Returns
    -------
    CPTensor : (weight, factors)
        * weights : 1D array of shape (rank, )
                all ones if normalize_factors is False (default),
                weights of the (normalized) factors otherwise
        * factors : List of factors of the CP decomposition element `i` is of shape
                (tensor.shape[i], rank)
        * sparse_component : nD array of shape tensor.shape. Returns only if `sparsity` is not None.

    errors : list
        A list of reconstruction errors at each iteration of the algorithms.

    References
    ----------
    .. [1] T.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
                SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.

    .. [2] Tomasi, Giorgio, and Rasmus Bro. "PARAFAC and missing values."
                Chemometrics and Intelligent Laboratory Systems 75.2 (2005): 163-180.

    .. [3] R. Bro, "Multi-Way Analysis in the Food Industry: Models, Algorithms, and
                Applications", PhD., University of Amsterdam, 1998
    """

    def __init__(self, rank, n_iter_max=100, init="svd", svd='numpy_svd', tol=10e-8,
                 sparsity_coefficients=None, fixed_modes=None, nn_modes='all', exact=False,
                 verbose=False, cvg_criterion='abs_rec_error'):
        self.rank = rank
        self.n_iter_max = n_iter_max
        self.init = init
        self.svd = svd
        self.tol = tol
        self.sparsity_coefficients = sparsity_coefficients
        self.fixed_modes = fixed_modes
        self.nn_modes = nn_modes
        self.exact = exact
        self.verbose = verbose
        self.cvg_criterion = cvg_criterion

    def fit_transform(self, tensor):
        """Decompose an input tensor

        Parameters
        ----------
        tensor : tensorly tensor
            input tensor to decompose

        Returns
        -------
        CPTensor
            decomposed tensor
        """

        cp_tensor, errors = non_negative_parafac_hals(
            tensor,
            rank=self.rank,
            n_iter_max=self.n_iter_max,
            init=self.init,
            svd=self.svd,
            tol=self.tol,
            sparsity_coefficients=self.sparsity_coefficients,
            fixed_modes=self.fixed_modes,
            nn_modes=self.nn_modes,
            exact=self.exact,
            verbose=self.verbose,
            return_errors=True,
            cvg_criterion=self.cvg_criterion,
        )

        self.decomposition_ = cp_tensor
        self.errors_ = errors
        return self.decomposition_

    def __repr__(self):
        return f'Rank-{self.rank} Non-Negative CP decomposition.'
back to top