Revision c773da9f5b81c15a00fec29ca0499e58441671de authored by Rene Brun on 09 October 2006, 06:31:09 UTC, committed by Rene Brun on 09 October 2006, 06:31:09 UTC
ixes in GetStats() for taking into account underflow/overflow when TH1::StatOverflows is set and the modifications in TH2::ProjectionX and TH2::ProjectionY to use TH1::SetBinContent
instead of TH1::Fill in oder to have correct statistics in the projected histogram in case of weights. This fixes the bug 19628.
The number of entries in the projected histogram is set now to the number of effective entries.


git-svn-id: http://root.cern.ch/svn/root/trunk@16477 27541ba8-7e3a-0410-8455-c3a389f83636
1 parent 73d8d11
Raw File
FFT.C
#include "TH1D.h"
#include "TVirtualFFT.h"
#include "TF1.h"
#include "TCanvas.h"

void FFT()
{
//This tutorial illustrates the Fast Fourier Transforms interface in ROOT.
//FFT transform types provided in ROOT:
// - "C2CFORWARD" - a complex input/output discrete Fourier transform (DFT) 
//                  in one or more dimensions, -1 in the exponent
// - "C2CBACKWARD"- a complex input/output discrete Fourier transform (DFT) 
//                  in one or more dimensions, +1 in the exponent
// - "R2C"        - a real-input/complex-output discrete Fourier transform (DFT)
//                  in one or more dimensions,
// - "C2R"        - inverse transforms to "R2C", taking complex input 
//                  (storing the non-redundant half of a logically Hermitian array) 
//                  to real output
// - "R2HC"       - a real-input DFT with output in ¡Èhalfcomplex¡É format, 
//                  i.e. real and imaginary parts for a transform of size n stored as
//                  r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1
// - "HC2R"       - computes the reverse of FFTW_R2HC, above
// - "DHT"        - computes a discrete Hartley transform
// Sine/cosine transforms:
//  DCT-I  (REDFT00 in FFTW3 notation)
//  DCT-II (REDFT10 in FFTW3 notation)
//  DCT-III(REDFT01 in FFTW3 notation)
//  DCT-IV (REDFT11 in FFTW3 notation)
//  DST-I  (RODFT00 in FFTW3 notation)
//  DST-II (RODFT10 in FFTW3 notation)
//  DST-III(RODFT01 in FFTW3 notation)
//  DST-IV (RODFT11 in FFTW3 notation)
//First part of the tutorial shows how to transform the histograms
//Second part shows how to transform the data arrays directly


//********* Histograms ********//

   //prepare the canvas for drawing
   TCanvas *myc = new TCanvas("myc", "Fast Fourier Transform", 800, 600);
   myc->SetFillColor(45);
   TPad *c1_1 = new TPad("c1_1", "c1_1",0.01,0.51,0.49,0.99);
   TPad *c1_2 = new TPad("c1_2", "c1_2",0.51,0.51,0.99,0.99);
   TPad *c1_3 = new TPad("c1_3", "c1_3",0.01,0.01,0.49,0.49);
   TPad *c1_4 = new TPad("c1_4", "c1_4",0.51,0.01,0.99,0.49);
   c1_1->Draw();
   c1_2->Draw();
   c1_3->Draw();
   c1_4->Draw();
   c1_1->SetFillColor(30);
   c1_1->SetFrameFillColor(42);
   c1_2->SetFillColor(30);
   c1_2->SetFrameFillColor(42);
   c1_3->SetFillColor(30);
   c1_3->SetFrameFillColor(42);
   c1_4->SetFillColor(30);
   c1_4->SetFrameFillColor(42);
   c1_1->cd();

   //A function to sample
   TF1 *fsin = new TF1("fsin", "sin(x)+sin(2*x)+sin(0.5*x)+1", 0, 4*TMath::Pi());
   fsin->Draw();
   Int_t n=25;
   TH1D *hsin = new TH1D("hsin", "hsin", n+1, 0, 4*TMath::Pi());
   Double_t x;
   //Fill the histogram with function values
   for (Int_t i=0; i<=n; i++){
      x = (Double_t(i)/n)*(4*TMath::Pi());
      hsin->SetBinContent(i+1, fsin->Eval(x));
   }
   hsin->Draw("same");
   fsin->GetXaxis()->SetLabelSize(0.05);
   fsin->GetYaxis()->SetLabelSize(0.05);
   c1_2->cd();
   //Compute the transform and look at the magnitude of the output
   TH1 *hm =0;
   hm = hsin->FFT(hm, "MAG");
   hm->Draw();
   hm->SetStats(kFALSE);
   hm->GetXaxis()->SetLabelSize(0.05);
   hm->GetYaxis()->SetLabelSize(0.05);
   c1_3->cd();
   //Look at the phase of the output
   TH1 *hp = 0;
   hp = hsin->FFT(hp, "PH");
   hp->Draw();
   hp->SetStats(kFALSE);
   hp->GetXaxis()->SetLabelSize(0.05);
   hp->GetYaxis()->SetLabelSize(0.05);
   //Look at the DC component and the Nyquist harmonic:
   TVirtualFFT *fft = TVirtualFFT::GetCurrentTransform();
   Double_t re, im;
   fft->GetPointComplex(0, re, im);
   printf("1st transform: DC component: %f\n", re);
   fft->GetPointComplex(n/2+1, re, im);
   printf("1st transform: Nyquist harmonic: %f\n", re);

//********* Data array - same transform ********//

   //Allocate an array big enough to hold the transform output
   //Transform output in 1d contains, for a transform of size N, 
   //N/2+1 complex numbers, i.e. 2*(N/2+1) real numbers
   //our transform is of size n+1, because the histogram has n+1 bins

   Double_t *in = new Double_t[2*((n+1)/2+1)];
   for (Int_t i=0; i<=n; i++){
      x = (Double_t(i)/n)*(4*TMath::Pi());
      in[i] =  fsin->Eval(x);
   }

   //Make our own TVirtualFFT object (using option "K")
   //Third parameter (option) consists of 3 parts:
   //-transform type:
   // real input/complex output in our case
   //-transform flag: 
   // the amount of time spent in planning
   // the transform (see TVirtualFFT class description)
   //-to create a new TVirtualFFT object (option "K") or use the global (default)
   Int_t n_size = n+1;
   TVirtualFFT *fft_own = TVirtualFFT::FFT(1, &n_size, "R2C ES K");
   fft_own->SetPoints(in);
   fft_own->Transform();

   //Copy all the output points:
   fft_own->GetPoints(in);
   //Draw the real part of the output
   c1_4->cd();
   TH1 *hr = 0;
   hr = TH1::TransformHisto(fft_own, hr, "RE");
   hr->Draw();
   hr->SetStats(kFALSE);
   hr->GetXaxis()->SetLabelSize(0.05);
   hr->GetYaxis()->SetLabelSize(0.05);
   myc->cd();
   //Now let's make another transform of the same size
   //The same transform object can be used, as the size and the type of the transform
   //haven't changed
   TF1 *fcos = new TF1("fcos", "cos(x)+cos(0.5*x)+cos(2*x)+1", 0, 4*TMath::Pi());
   for (Int_t i=0; i<=n; i++){
      x = (Double_t(i)/n)*(4*TMath::Pi());
      in[i] =  fcos->Eval(x);
   }
   fft_own->SetPoints(in);
   fft_own->Transform();
   fft_own->GetPointComplex(0, re, im);
   printf("2nd transform: DC component: %f\n", re);
   fft_own->GetPointComplex(n/2+1, re, im);
   printf("2nd transform: Nyquist harmonic: %f\n", re);
   delete fft_own;



}

back to top