Revision c77a036beceabbfd85b366193685cb49f38292bd authored by Mark Nelson on 23 October 2008, 03:08:16 UTC, committed by Jeff Garzik on 28 October 2008, 03:54:55 UTC
Add an appropriate entry for the Promise PDC42819 controller. It has an
AHCI mode and so far works correctly with board_ahci.

This chip is found on Promise's FastTrak TX2650 (2 port) and TX4650 (4 port)
software-based RAID cards (for which there is a binary driver, t3sas) and
can be found on some motherboards, for example the MSI K9A2 Platinum,
which calls the chip a Promise T3 controller.

Although this controller also supports SAS devices, its default bootup mode
is AHCI and the binary driver has to do some magic to get the chip into the
appropriate mode to drive SAS disks.

Seeing as no documentation is provided by Promise, adding this entry to the
ahci driver allows the controller to be useful to people as a SATA
controller (with no ill effects on the system if a SAS disk is connected -
probing of the port just times out with "link online but device
misclassified"), without having to resort to using the binary driver. Users
who require SAS or the proprietary software raid can get this functionality
using the binary driver.

Signed-off-by: Mark Nelson <mdnelson8@gmail.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
1 parent ab77163
Raw File
kfifo.c
/*
 * A simple kernel FIFO implementation.
 *
 * Copyright (C) 2004 Stelian Pop <stelian@popies.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/kfifo.h>
#include <linux/log2.h>

/**
 * kfifo_init - allocates a new FIFO using a preallocated buffer
 * @buffer: the preallocated buffer to be used.
 * @size: the size of the internal buffer, this have to be a power of 2.
 * @gfp_mask: get_free_pages mask, passed to kmalloc()
 * @lock: the lock to be used to protect the fifo buffer
 *
 * Do NOT pass the kfifo to kfifo_free() after use! Simply free the
 * &struct kfifo with kfree().
 */
struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
			 gfp_t gfp_mask, spinlock_t *lock)
{
	struct kfifo *fifo;

	/* size must be a power of 2 */
	BUG_ON(!is_power_of_2(size));

	fifo = kmalloc(sizeof(struct kfifo), gfp_mask);
	if (!fifo)
		return ERR_PTR(-ENOMEM);

	fifo->buffer = buffer;
	fifo->size = size;
	fifo->in = fifo->out = 0;
	fifo->lock = lock;

	return fifo;
}
EXPORT_SYMBOL(kfifo_init);

/**
 * kfifo_alloc - allocates a new FIFO and its internal buffer
 * @size: the size of the internal buffer to be allocated.
 * @gfp_mask: get_free_pages mask, passed to kmalloc()
 * @lock: the lock to be used to protect the fifo buffer
 *
 * The size will be rounded-up to a power of 2.
 */
struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
{
	unsigned char *buffer;
	struct kfifo *ret;

	/*
	 * round up to the next power of 2, since our 'let the indices
	 * wrap' tachnique works only in this case.
	 */
	if (size & (size - 1)) {
		BUG_ON(size > 0x80000000);
		size = roundup_pow_of_two(size);
	}

	buffer = kmalloc(size, gfp_mask);
	if (!buffer)
		return ERR_PTR(-ENOMEM);

	ret = kfifo_init(buffer, size, gfp_mask, lock);

	if (IS_ERR(ret))
		kfree(buffer);

	return ret;
}
EXPORT_SYMBOL(kfifo_alloc);

/**
 * kfifo_free - frees the FIFO
 * @fifo: the fifo to be freed.
 */
void kfifo_free(struct kfifo *fifo)
{
	kfree(fifo->buffer);
	kfree(fifo);
}
EXPORT_SYMBOL(kfifo_free);

/**
 * __kfifo_put - puts some data into the FIFO, no locking version
 * @fifo: the fifo to be used.
 * @buffer: the data to be added.
 * @len: the length of the data to be added.
 *
 * This function copies at most @len bytes from the @buffer into
 * the FIFO depending on the free space, and returns the number of
 * bytes copied.
 *
 * Note that with only one concurrent reader and one concurrent
 * writer, you don't need extra locking to use these functions.
 */
unsigned int __kfifo_put(struct kfifo *fifo,
			 unsigned char *buffer, unsigned int len)
{
	unsigned int l;

	len = min(len, fifo->size - fifo->in + fifo->out);

	/*
	 * Ensure that we sample the fifo->out index -before- we
	 * start putting bytes into the kfifo.
	 */

	smp_mb();

	/* first put the data starting from fifo->in to buffer end */
	l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
	memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);

	/* then put the rest (if any) at the beginning of the buffer */
	memcpy(fifo->buffer, buffer + l, len - l);

	/*
	 * Ensure that we add the bytes to the kfifo -before-
	 * we update the fifo->in index.
	 */

	smp_wmb();

	fifo->in += len;

	return len;
}
EXPORT_SYMBOL(__kfifo_put);

/**
 * __kfifo_get - gets some data from the FIFO, no locking version
 * @fifo: the fifo to be used.
 * @buffer: where the data must be copied.
 * @len: the size of the destination buffer.
 *
 * This function copies at most @len bytes from the FIFO into the
 * @buffer and returns the number of copied bytes.
 *
 * Note that with only one concurrent reader and one concurrent
 * writer, you don't need extra locking to use these functions.
 */
unsigned int __kfifo_get(struct kfifo *fifo,
			 unsigned char *buffer, unsigned int len)
{
	unsigned int l;

	len = min(len, fifo->in - fifo->out);

	/*
	 * Ensure that we sample the fifo->in index -before- we
	 * start removing bytes from the kfifo.
	 */

	smp_rmb();

	/* first get the data from fifo->out until the end of the buffer */
	l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
	memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);

	/* then get the rest (if any) from the beginning of the buffer */
	memcpy(buffer + l, fifo->buffer, len - l);

	/*
	 * Ensure that we remove the bytes from the kfifo -before-
	 * we update the fifo->out index.
	 */

	smp_mb();

	fifo->out += len;

	return len;
}
EXPORT_SYMBOL(__kfifo_get);
back to top