Revision c9e75b2125b563e67663f78ad53ea9387a9a7aa1 authored by Alex Deucher on 02 June 2010, 21:56:01 UTC, committed by Dave Airlie on 07 June 2010, 23:35:19 UTC
This adds an additional profile, mid, to the pm profile
code which takes the place of the old low profile.  The default
behavior remains the same, e.g., auto profile now selects between
mid and high profiles based on power source, however, you can now
manually force the low profile which was previously only available
as a dpms off state.  Enabling the low profile when the displays
are on has been known to cause display corruption in some cases.

Signed-off-by: Alex Deucher <alexdeucher@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
1 parent f8ed8b4
Raw File
rational.c
/*
 * rational fractions
 *
 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com>
 *
 * helper functions when coping with rational numbers
 */

#include <linux/rational.h>
#include <linux/module.h>

/*
 * calculate best rational approximation for a given fraction
 * taking into account restricted register size, e.g. to find
 * appropriate values for a pll with 5 bit denominator and
 * 8 bit numerator register fields, trying to set up with a
 * frequency ratio of 3.1415, one would say:
 *
 * rational_best_approximation(31415, 10000,
 *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
 *
 * you may look at given_numerator as a fixed point number,
 * with the fractional part size described in given_denominator.
 *
 * for theoretical background, see:
 * http://en.wikipedia.org/wiki/Continued_fraction
 */

void rational_best_approximation(
	unsigned long given_numerator, unsigned long given_denominator,
	unsigned long max_numerator, unsigned long max_denominator,
	unsigned long *best_numerator, unsigned long *best_denominator)
{
	unsigned long n, d, n0, d0, n1, d1;
	n = given_numerator;
	d = given_denominator;
	n0 = d1 = 0;
	n1 = d0 = 1;
	for (;;) {
		unsigned long t, a;
		if ((n1 > max_numerator) || (d1 > max_denominator)) {
			n1 = n0;
			d1 = d0;
			break;
		}
		if (d == 0)
			break;
		t = d;
		a = n / d;
		d = n % d;
		n = t;
		t = n0 + a * n1;
		n0 = n1;
		n1 = t;
		t = d0 + a * d1;
		d0 = d1;
		d1 = t;
	}
	*best_numerator = n1;
	*best_denominator = d1;
}

EXPORT_SYMBOL(rational_best_approximation);
back to top