Revision cadc1adffa447f02eb65bd848cf26c13142a74bb authored by sdong on 13 June 2014, 22:54:19 UTC, committed by sdong on 16 June 2014, 23:10:52 UTC
Summary:
We added multiple fields to FileMetaData recently and are planning to add more.
This refactoring separate the minimum information for accessing the file. This object is copyable (FileMetaData is not copyable since the ref counter). I hope this refactoring can enable further improvements:

(1) use it to design a more efficient data structure to speed up read queries.
(2) in the future, when we add information of storage level, we can easily do the encoding, instead of enlarge this structure, which might expand memory work set for file meta data.

The definition is same as current EncodedFileMetaData used in two level iterator, so now the logic in two level iterator is easier to understand.

Test Plan: make all check

Reviewers: haobo, igor, ljin

Reviewed By: ljin

Subscribers: leveldb, dhruba, yhchiang

Differential Revision: https://reviews.facebook.net/D18933
1 parent 4d913cf
Raw File
dynamic_bloom_test.cc
//  Copyright (c) 2013, Facebook, Inc.  All rights reserved.
//  This source code is licensed under the BSD-style license found in the
//  LICENSE file in the root directory of this source tree. An additional grant
//  of patent rights can be found in the PATENTS file in the same directory.

#ifndef GFLAGS
#include <cstdio>
int main() {
  fprintf(stderr, "Please install gflags to run rocksdb tools\n");
  return 1;
}
#else

#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#include <algorithm>
#include <gflags/gflags.h>

#include "dynamic_bloom.h"
#include "port/port.h"
#include "util/logging.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "util/stop_watch.h"

using GFLAGS::ParseCommandLineFlags;

DEFINE_int32(bits_per_key, 10, "");
DEFINE_int32(num_probes, 6, "");
DEFINE_bool(enable_perf, false, "");

namespace rocksdb {

static Slice Key(uint64_t i, char* buffer) {
  memcpy(buffer, &i, sizeof(i));
  return Slice(buffer, sizeof(i));
}

class DynamicBloomTest {
};

TEST(DynamicBloomTest, EmptyFilter) {
  DynamicBloom bloom1(100, 0, 2);
  ASSERT_TRUE(!bloom1.MayContain("hello"));
  ASSERT_TRUE(!bloom1.MayContain("world"));

  DynamicBloom bloom2(CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
  ASSERT_TRUE(!bloom2.MayContain("hello"));
  ASSERT_TRUE(!bloom2.MayContain("world"));
}

TEST(DynamicBloomTest, Small) {
  DynamicBloom bloom1(100, 0, 2);
  bloom1.Add("hello");
  bloom1.Add("world");
  ASSERT_TRUE(bloom1.MayContain("hello"));
  ASSERT_TRUE(bloom1.MayContain("world"));
  ASSERT_TRUE(!bloom1.MayContain("x"));
  ASSERT_TRUE(!bloom1.MayContain("foo"));

  DynamicBloom bloom2(CACHE_LINE_SIZE * 8 * 2 - 1, 1, 2);
  bloom2.Add("hello");
  bloom2.Add("world");
  ASSERT_TRUE(bloom2.MayContain("hello"));
  ASSERT_TRUE(bloom2.MayContain("world"));
  ASSERT_TRUE(!bloom2.MayContain("x"));
  ASSERT_TRUE(!bloom2.MayContain("foo"));
}

static uint32_t NextNum(uint32_t num) {
  if (num < 10) {
    num += 1;
  } else if (num < 100) {
    num += 10;
  } else if (num < 1000) {
    num += 100;
  } else {
    num += 1000;
  }
  return num;
}

TEST(DynamicBloomTest, VaryingLengths) {
  char buffer[sizeof(uint64_t)];

  // Count number of filters that significantly exceed the false positive rate
  int mediocre_filters = 0;
  int good_filters = 0;
  uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);

  fprintf(stderr, "bits_per_key: %d  num_probes: %d\n",
          FLAGS_bits_per_key, num_probes);

  for (uint32_t enable_locality = 0; enable_locality < 2; ++enable_locality) {
    for (uint32_t num = 1; num <= 10000; num = NextNum(num)) {
      uint32_t bloom_bits = 0;
      if (enable_locality == 0) {
        bloom_bits = std::max(num * FLAGS_bits_per_key, 64U);
      } else {
        bloom_bits = std::max(num * FLAGS_bits_per_key,
                              enable_locality * CACHE_LINE_SIZE * 8);
      }
      DynamicBloom bloom(bloom_bits, enable_locality, num_probes);
      for (uint64_t i = 0; i < num; i++) {
        bloom.Add(Key(i, buffer));
        ASSERT_TRUE(bloom.MayContain(Key(i, buffer)));
      }

      // All added keys must match
      for (uint64_t i = 0; i < num; i++) {
        ASSERT_TRUE(bloom.MayContain(Key(i, buffer)))
          << "Num " << num << "; key " << i;
      }

      // Check false positive rate

      int result = 0;
      for (uint64_t i = 0; i < 10000; i++) {
        if (bloom.MayContain(Key(i + 1000000000, buffer))) {
          result++;
        }
      }
      double rate = result / 10000.0;

      fprintf(stderr,
              "False positives: %5.2f%% @ num = %6u, bloom_bits = %6u, "
              "enable locality?%u\n",
              rate * 100.0, num, bloom_bits, enable_locality);

      if (rate > 0.0125)
        mediocre_filters++;  // Allowed, but not too often
      else
        good_filters++;
    }

    fprintf(stderr, "Filters: %d good, %d mediocre\n",
            good_filters, mediocre_filters);
    ASSERT_LE(mediocre_filters, good_filters/5);
  }
}

TEST(DynamicBloomTest, perf) {
  StopWatchNano timer(Env::Default());
  uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);

  if (!FLAGS_enable_perf) {
    return;
  }

  for (uint64_t m = 1; m <= 8; ++m) {
    const uint64_t num_keys = m * 8 * 1024 * 1024;
    fprintf(stderr, "testing %" PRIu64 "M keys\n", m * 8);

    DynamicBloom std_bloom(num_keys * 10, 0, num_probes);

    timer.Start();
    for (uint64_t i = 1; i <= num_keys; ++i) {
      std_bloom.Add(Slice(reinterpret_cast<const char*>(&i), 8));
    }

    uint64_t elapsed = timer.ElapsedNanos();
    fprintf(stderr, "standard bloom, avg add latency %" PRIu64 "\n",
            elapsed / num_keys);

    uint64_t count = 0;
    timer.Start();
    for (uint64_t i = 1; i <= num_keys; ++i) {
      if (std_bloom.MayContain(Slice(reinterpret_cast<const char*>(&i), 8))) {
        ++count;
      }
    }
    elapsed = timer.ElapsedNanos();
    fprintf(stderr, "standard bloom, avg query latency %" PRIu64 "\n",
            elapsed / count);
    ASSERT_TRUE(count == num_keys);

    // Locality enabled version
    DynamicBloom blocked_bloom(num_keys * 10, 1, num_probes);

      timer.Start();
      for (uint64_t i = 1; i <= num_keys; ++i) {
        blocked_bloom.Add(Slice(reinterpret_cast<const char*>(&i), 8));
      }

      elapsed = timer.ElapsedNanos();
      fprintf(stderr,
              "blocked bloom(enable locality), avg add latency %" PRIu64 "\n",
              elapsed / num_keys);

      count = 0;
      timer.Start();
      for (uint64_t i = 1; i <= num_keys; ++i) {
        if (blocked_bloom.MayContain(
              Slice(reinterpret_cast<const char*>(&i), 8))) {
          ++count;
        }
      }

      elapsed = timer.ElapsedNanos();
      fprintf(stderr,
              "blocked bloom(enable locality), avg query latency %" PRIu64 "\n",
              elapsed / count);
      ASSERT_TRUE(count == num_keys);
    }
}

}  // namespace rocksdb

int main(int argc, char** argv) {
  ParseCommandLineFlags(&argc, &argv, true);

  return rocksdb::test::RunAllTests();
}

#endif  // GFLAGS
back to top