Revision ce113604672fed9b429b1c162b1005794fff6a17 authored by Jeff King on 29 August 2015, 05:04:18 UTC, committed by Junio C Hamano on 31 August 2015, 16:34:20 UTC
If you init or clone an empty repository, the initial
message from running "git log" is not very friendly:

  $ git init
  Initialized empty Git repository in /home/peff/foo/.git/
  $ git log
  fatal: bad default revision 'HEAD'

Let's detect this situation and write a more friendly
message:

  $ git log
  fatal: your current branch 'master' does not have any commits yet

We also detect the case that 'HEAD' points to a broken ref;
this should be even less common, but is easy to see. Note
that we do not diagnose all possible cases. We rely on
resolve_ref, which means we do not get information about
complex cases. E.g., "--default master" would use dwim_ref
to find "refs/heads/master", but we notice only that
"master" does not exist. Similarly, a complex sha1
expression like "--default HEAD^2" will not resolve as a
ref.

But that's OK. We fall back to a generic error message in
those cases, and they are unlikely to be used anyway.
Catching an empty or broken "HEAD" improves the common case,
and the other cases are not regressed.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
1 parent f86f31a
Raw File
tree.c
#include "cache.h"
#include "cache-tree.h"
#include "tree.h"
#include "blob.h"
#include "commit.h"
#include "tag.h"
#include "tree-walk.h"

const char *tree_type = "tree";

static int read_one_entry_opt(const unsigned char *sha1, const char *base, int baselen, const char *pathname, unsigned mode, int stage, int opt)
{
	int len;
	unsigned int size;
	struct cache_entry *ce;

	if (S_ISDIR(mode))
		return READ_TREE_RECURSIVE;

	len = strlen(pathname);
	size = cache_entry_size(baselen + len);
	ce = xcalloc(1, size);

	ce->ce_mode = create_ce_mode(mode);
	ce->ce_flags = create_ce_flags(stage);
	ce->ce_namelen = baselen + len;
	memcpy(ce->name, base, baselen);
	memcpy(ce->name + baselen, pathname, len+1);
	hashcpy(ce->sha1, sha1);
	return add_cache_entry(ce, opt);
}

static int read_one_entry(const unsigned char *sha1, struct strbuf *base,
			  const char *pathname, unsigned mode, int stage,
			  void *context)
{
	return read_one_entry_opt(sha1, base->buf, base->len, pathname,
				  mode, stage,
				  ADD_CACHE_OK_TO_ADD|ADD_CACHE_SKIP_DFCHECK);
}

/*
 * This is used when the caller knows there is no existing entries at
 * the stage that will conflict with the entry being added.
 */
static int read_one_entry_quick(const unsigned char *sha1, struct strbuf *base,
				const char *pathname, unsigned mode, int stage,
				void *context)
{
	return read_one_entry_opt(sha1, base->buf, base->len, pathname,
				  mode, stage,
				  ADD_CACHE_JUST_APPEND);
}

static int read_tree_1(struct tree *tree, struct strbuf *base,
		       int stage, const struct pathspec *pathspec,
		       read_tree_fn_t fn, void *context)
{
	struct tree_desc desc;
	struct name_entry entry;
	unsigned char sha1[20];
	int len, oldlen = base->len;
	enum interesting retval = entry_not_interesting;

	if (parse_tree(tree))
		return -1;

	init_tree_desc(&desc, tree->buffer, tree->size);

	while (tree_entry(&desc, &entry)) {
		if (retval != all_entries_interesting) {
			retval = tree_entry_interesting(&entry, base, 0, pathspec);
			if (retval == all_entries_not_interesting)
				break;
			if (retval == entry_not_interesting)
				continue;
		}

		switch (fn(entry.sha1, base,
			   entry.path, entry.mode, stage, context)) {
		case 0:
			continue;
		case READ_TREE_RECURSIVE:
			break;
		default:
			return -1;
		}

		if (S_ISDIR(entry.mode))
			hashcpy(sha1, entry.sha1);
		else if (S_ISGITLINK(entry.mode)) {
			struct commit *commit;

			commit = lookup_commit(entry.sha1);
			if (!commit)
				die("Commit %s in submodule path %s%s not found",
				    sha1_to_hex(entry.sha1),
				    base->buf, entry.path);

			if (parse_commit(commit))
				die("Invalid commit %s in submodule path %s%s",
				    sha1_to_hex(entry.sha1),
				    base->buf, entry.path);

			hashcpy(sha1, commit->tree->object.sha1);
		}
		else
			continue;

		len = tree_entry_len(&entry);
		strbuf_add(base, entry.path, len);
		strbuf_addch(base, '/');
		retval = read_tree_1(lookup_tree(sha1),
				     base, stage, pathspec,
				     fn, context);
		strbuf_setlen(base, oldlen);
		if (retval)
			return -1;
	}
	return 0;
}

int read_tree_recursive(struct tree *tree,
			const char *base, int baselen,
			int stage, const struct pathspec *pathspec,
			read_tree_fn_t fn, void *context)
{
	struct strbuf sb = STRBUF_INIT;
	int ret;

	strbuf_add(&sb, base, baselen);
	ret = read_tree_1(tree, &sb, stage, pathspec, fn, context);
	strbuf_release(&sb);
	return ret;
}

static int cmp_cache_name_compare(const void *a_, const void *b_)
{
	const struct cache_entry *ce1, *ce2;

	ce1 = *((const struct cache_entry **)a_);
	ce2 = *((const struct cache_entry **)b_);
	return cache_name_stage_compare(ce1->name, ce1->ce_namelen, ce_stage(ce1),
				  ce2->name, ce2->ce_namelen, ce_stage(ce2));
}

int read_tree(struct tree *tree, int stage, struct pathspec *match)
{
	read_tree_fn_t fn = NULL;
	int i, err;

	/*
	 * Currently the only existing callers of this function all
	 * call it with stage=1 and after making sure there is nothing
	 * at that stage; we could always use read_one_entry_quick().
	 *
	 * But when we decide to straighten out git-read-tree not to
	 * use unpack_trees() in some cases, this will probably start
	 * to matter.
	 */

	/*
	 * See if we have cache entry at the stage.  If so,
	 * do it the original slow way, otherwise, append and then
	 * sort at the end.
	 */
	for (i = 0; !fn && i < active_nr; i++) {
		const struct cache_entry *ce = active_cache[i];
		if (ce_stage(ce) == stage)
			fn = read_one_entry;
	}

	if (!fn)
		fn = read_one_entry_quick;
	err = read_tree_recursive(tree, "", 0, stage, match, fn, NULL);
	if (fn == read_one_entry || err)
		return err;

	/*
	 * Sort the cache entry -- we need to nuke the cache tree, though.
	 */
	cache_tree_free(&active_cache_tree);
	qsort(active_cache, active_nr, sizeof(active_cache[0]),
	      cmp_cache_name_compare);
	return 0;
}

struct tree *lookup_tree(const unsigned char *sha1)
{
	struct object *obj = lookup_object(sha1);
	if (!obj)
		return create_object(sha1, alloc_tree_node());
	return object_as_type(obj, OBJ_TREE, 0);
}

int parse_tree_buffer(struct tree *item, void *buffer, unsigned long size)
{
	if (item->object.parsed)
		return 0;
	item->object.parsed = 1;
	item->buffer = buffer;
	item->size = size;

	return 0;
}

int parse_tree(struct tree *item)
{
	 enum object_type type;
	 void *buffer;
	 unsigned long size;

	if (item->object.parsed)
		return 0;
	buffer = read_sha1_file(item->object.sha1, &type, &size);
	if (!buffer)
		return error("Could not read %s",
			     sha1_to_hex(item->object.sha1));
	if (type != OBJ_TREE) {
		free(buffer);
		return error("Object %s not a tree",
			     sha1_to_hex(item->object.sha1));
	}
	return parse_tree_buffer(item, buffer, size);
}

void free_tree_buffer(struct tree *tree)
{
	free(tree->buffer);
	tree->buffer = NULL;
	tree->size = 0;
	tree->object.parsed = 0;
}

struct tree *parse_tree_indirect(const unsigned char *sha1)
{
	struct object *obj = parse_object(sha1);
	do {
		if (!obj)
			return NULL;
		if (obj->type == OBJ_TREE)
			return (struct tree *) obj;
		else if (obj->type == OBJ_COMMIT)
			obj = &(((struct commit *) obj)->tree->object);
		else if (obj->type == OBJ_TAG)
			obj = ((struct tag *) obj)->tagged;
		else
			return NULL;
		if (!obj->parsed)
			parse_object(obj->sha1);
	} while (1);
}
back to top