https://github.com/torvalds/linux
Revision cff9211eb1a1f58ce7f5a2d596b617928fd4be0e authored by Christoffer Dall on 16 October 2015, 10:41:21 UTC, committed by Christoffer Dall on 20 October 2015, 16:04:54 UTC
We have an interesting issue when the guest disables the timer interrupt
on the VGIC, which happens when turning VCPUs off using PSCI, for
example.

The problem is that because the guest disables the virtual interrupt at
the VGIC level, we never inject interrupts to the guest and therefore
never mark the interrupt as active on the physical distributor.  The
host also never takes the timer interrupt (we only use the timer device
to trigger a guest exit and everything else is done in software), so the
interrupt does not become active through normal means.

The result is that we keep entering the guest with a programmed timer
that will always fire as soon as we context switch the hardware timer
state and run the guest, preventing forward progress for the VCPU.

Since the active state on the physical distributor is really part of the
timer logic, it is the job of our virtual arch timer driver to manage
this state.

The timer->map->active boolean field indicates whether we have signalled
this interrupt to the vgic and if that interrupt is still pending or
active.  As long as that is the case, the hardware doesn't have to
generate physical interrupts and therefore we mark the interrupt as
active on the physical distributor.

We also have to restore the pending state of an interrupt that was
queued to an LR but was retired from the LR for some reason, while
remaining pending in the LR.

Cc: Marc Zyngier <marc.zyngier@arm.com>
Reported-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
1 parent 4a5d69b
Raw File
Tip revision: cff9211eb1a1f58ce7f5a2d596b617928fd4be0e authored by Christoffer Dall on 16 October 2015, 10:41:21 UTC
arm/arm64: KVM: Fix arch timer behavior for disabled interrupts
Tip revision: cff9211
memneq.c
/*
 * Constant-time equality testing of memory regions.
 *
 * Authors:
 *
 *   James Yonan <james@openvpn.net>
 *   Daniel Borkmann <dborkman@redhat.com>
 *
 * This file is provided under a dual BSD/GPLv2 license.  When using or
 * redistributing this file, you may do so under either license.
 *
 * GPL LICENSE SUMMARY
 *
 * Copyright(c) 2013 OpenVPN Technologies, Inc. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 * The full GNU General Public License is included in this distribution
 * in the file called LICENSE.GPL.
 *
 * BSD LICENSE
 *
 * Copyright(c) 2013 OpenVPN Technologies, Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in
 *     the documentation and/or other materials provided with the
 *     distribution.
 *   * Neither the name of OpenVPN Technologies nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <crypto/algapi.h>

#ifndef __HAVE_ARCH_CRYPTO_MEMNEQ

/* Generic path for arbitrary size */
static inline unsigned long
__crypto_memneq_generic(const void *a, const void *b, size_t size)
{
	unsigned long neq = 0;

#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
	while (size >= sizeof(unsigned long)) {
		neq |= *(unsigned long *)a ^ *(unsigned long *)b;
		OPTIMIZER_HIDE_VAR(neq);
		a += sizeof(unsigned long);
		b += sizeof(unsigned long);
		size -= sizeof(unsigned long);
	}
#endif /* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */
	while (size > 0) {
		neq |= *(unsigned char *)a ^ *(unsigned char *)b;
		OPTIMIZER_HIDE_VAR(neq);
		a += 1;
		b += 1;
		size -= 1;
	}
	return neq;
}

/* Loop-free fast-path for frequently used 16-byte size */
static inline unsigned long __crypto_memneq_16(const void *a, const void *b)
{
	unsigned long neq = 0;

#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
	if (sizeof(unsigned long) == 8) {
		neq |= *(unsigned long *)(a)   ^ *(unsigned long *)(b);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned long *)(a+8) ^ *(unsigned long *)(b+8);
		OPTIMIZER_HIDE_VAR(neq);
	} else if (sizeof(unsigned int) == 4) {
		neq |= *(unsigned int *)(a)    ^ *(unsigned int *)(b);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned int *)(a+4)  ^ *(unsigned int *)(b+4);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned int *)(a+8)  ^ *(unsigned int *)(b+8);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned int *)(a+12) ^ *(unsigned int *)(b+12);
		OPTIMIZER_HIDE_VAR(neq);
	} else
#endif /* CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS */
	{
		neq |= *(unsigned char *)(a)    ^ *(unsigned char *)(b);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+1)  ^ *(unsigned char *)(b+1);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+2)  ^ *(unsigned char *)(b+2);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+3)  ^ *(unsigned char *)(b+3);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+4)  ^ *(unsigned char *)(b+4);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+5)  ^ *(unsigned char *)(b+5);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+6)  ^ *(unsigned char *)(b+6);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+7)  ^ *(unsigned char *)(b+7);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+8)  ^ *(unsigned char *)(b+8);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+9)  ^ *(unsigned char *)(b+9);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+10) ^ *(unsigned char *)(b+10);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+11) ^ *(unsigned char *)(b+11);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+12) ^ *(unsigned char *)(b+12);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+13) ^ *(unsigned char *)(b+13);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+14) ^ *(unsigned char *)(b+14);
		OPTIMIZER_HIDE_VAR(neq);
		neq |= *(unsigned char *)(a+15) ^ *(unsigned char *)(b+15);
		OPTIMIZER_HIDE_VAR(neq);
	}

	return neq;
}

/* Compare two areas of memory without leaking timing information,
 * and with special optimizations for common sizes.  Users should
 * not call this function directly, but should instead use
 * crypto_memneq defined in crypto/algapi.h.
 */
noinline unsigned long __crypto_memneq(const void *a, const void *b,
				       size_t size)
{
	switch (size) {
	case 16:
		return __crypto_memneq_16(a, b);
	default:
		return __crypto_memneq_generic(a, b, size);
	}
}
EXPORT_SYMBOL(__crypto_memneq);

#endif /* __HAVE_ARCH_CRYPTO_MEMNEQ */
back to top