Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision d1241293f2f9bb31910e4edce8816b569daaf1eb authored by Maarten Derickx on 17 December 2024, 15:53:37 UTC, committed by Maarten Derickx on 17 December 2024, 15:53:37 UTC
Remove accidental printing from Cuspidal classgroup
1 parent 0138e3a
  • Files
  • Changes
  • d2f6a1c
  • /
  • X_1_m_n.m
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:d1241293f2f9bb31910e4edce8816b569daaf1eb
directory badge Iframe embedding
swh:1:dir:d2f6a1cc60009b7b5e0254a88b029e3c3e98fad1
content badge Iframe embedding
swh:1:cnt:50cc53a33a9c2bb73d63d40106f4be57e056d790
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
X_1_m_n.m
function X_1_m_n(m,n,base_ring : equation_directory:="models_X1_m_n", zeta_m:=0)
    //Input: m,n - integers such that m divides n
    //       base_ring - a ring
    //       equation_directory - directory with files X1_m_n.txt containing models
    //       zeta_m - a primitive mth root of unity in the base_ring (if unspecified one will be chosen)
    //Output: C - a curve
    //Returns an algebraic model C of the modular curve X_1(m,n) as a curve over base_ring
    assert IsDivisibleBy(n,m);
    if m gt 2 then
        if zeta_m ne 0 then
            assert zeta_m^m eq 1 and &and[zeta_m^e ne 1: e in Divisors(m)| e ne m];
        else
            try
                zeta_m := RootOfUnity(m,base_ring);
            catch e
                printf "Specified base ring %o does not contain a %oth root of unity", base_ring, m;
                assert false;
            end try;
        end if;
        z:=zeta_m; i:=zeta_m;
    end if;
    n_str := IntegerToString(n);
    m_str := IntegerToString(m);
    file_name := equation_directory cat "/X1_" cat m_str cat "_" cat n_str cat ".txt";
    data := Read(file_name);
    data := Split(data);
    //example contents of the file X1_2_10.txt
    //X := v^2 + (u^2 - 1)*v - 1;
    //q := 1/u;
    //t := -4*u/(u^2*v + u^2 - v + 3);
    //E:=[0,t^2-2*q*t-2,0,-(t^2-1)*(q*t+1)^2,0];
    //P:=[(t+1)*(q*t+1),t*(q*t+1)*(t+1)];
    //Q:=[0,0];
    A<u,v> := AffineSpace(base_ring,2);
    for line in data do
        val := Split(Split(line,"=")[2],";")[1];
        if line[1] eq "X" then X := eval(val); end if;
        if line[1] eq "q" then q := eval(val); end if;
        if line[1] eq "r" then r := eval(val); end if;
        if line[1] eq "s" then s := eval(val); end if;
        if line[1] eq "t" then t := eval(val); end if;
        if line[1] eq "E" then E := eval(val); end if;
        if line[1] eq "P" then P := eval(val); end if;
        if line[1] eq "Q" then Q := eval(val); end if;
    end for;
    C := Curve(A,X);
    return ProjectiveClosure(C),E,P,Q;
end function;
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top