Revision d38084d993f6b218862f3aa0693aacc2e3b4b1b3 authored by TUNA Caglayan on 29 April 2021, 08:44:25 UTC, committed by TUNA Caglayan on 12 May 2021, 12:26:22 UTC
1 parent e54a8ff
Raw File
_tucker.py
import tensorly as tl
from ._base_decomposition import DecompositionMixin
from ..base import unfold
from ..tenalg import multi_mode_dot, mode_dot
from ..tucker_tensor import tucker_to_tensor, TuckerTensor, validate_tucker_rank
import tensorly.tenalg as tlg
from ..tenalg.proximal import hals_nnls, active_set_nnls, fista
from math import sqrt
import warnings
from tensorly.decomposition._nn_cp import make_svd_non_negative

# Author: Jean Kossaifi <jean.kossaifi+tensors@gmail.com>

# License: BSD 3 clause


def initialize_tucker(tensor, rank, modes, random_state, init='svd', svd='numpy_svd', non_negative= False):
    """
    Initialize core and factors used in `tucker`.
    The type of initialization is set using `init`. If `init == 'random'` then
    initialize factor matrices using `random_state`. If `init == 'svd'` then
    initialize the `m`th factor matrix using the `rank` left singular vectors
    of the `m`th unfolding of the input tensor.
    
    Parameters
    ----------
    tensor : ndarray
    rank : int
           number of components
    modes : int list
    random_state : {None, int, np.random.RandomState}
    init : {'svd', 'random', cptensor}, optional
    svd : str, default is 'numpy_svd'
          function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    non_negative : bool, default is False
        if True, non-negative factors are returned
    
    Returns
    -------
    core    : ndarray
              initialized core tensor 
    factors : list of factors
    """
    try:
        svd_fun = tl.SVD_FUNS[svd]
    except KeyError:
        message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
                svd, tl.get_backend(), tl.SVD_FUNS)
        raise ValueError(message)
    # Initialisation
    if init == 'svd':
        factors = []
        for index, mode in enumerate(modes):
            U, S, V = svd_fun(unfold(tensor, mode), n_eigenvecs=rank[index], random_state=random_state)   
            
            if non_negative is True: 
                U = make_svd_non_negative(tensor, U, S, V, nntype="nndsvd")
            
            factors.append(U[:, :rank[index]])        
        # The initial core approximation is needed here for the masking step
        core = multi_mode_dot(tensor, factors, modes=modes, transpose=True)        
        if non_negative is True:
            core = tl.abs(core) 
            
    elif init == 'random':
        rng = tl.check_random_state(random_state)
        core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor))  # Check this
        factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
        if non_negative is True:
            factors = [tl.abs(f) for f in factors]
            core = tl.abs(core) 
    else:
        (core, factors) = init
 
    return core, factors
    

def partial_tucker(tensor, modes, rank=None, n_iter_max=100, init='svd', tol=10e-5,
                   svd='numpy_svd', random_state=None, verbose=False, mask=None):
    """Partial tucker decomposition via Higher Order Orthogonal Iteration (HOI)

        Decomposes `tensor` into a Tucker decomposition exclusively along the provided modes.

    Parameters
    ----------
    tensor : ndarray
    modes : int list
            list of the modes on which to perform the decomposition
    rank : None, int or int list
        size of the core tensor, ``(len(ranks) == tensor.ndim)``
        if int, the same rank is used for all modes
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, or TuckerTensor optional
        if a TuckerTensor is provided, this is used for initialization
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD,
        acceptable values in tensorly.SVD_FUNS
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity
    mask : ndarray
        array of booleans with the same shape as ``tensor`` should be 0 where
        the values are missing and 1 everywhere else. Note:  if tensor is
        sparse, then mask should also be sparse with a fill value of 1 (or
        True).

    Returns
    -------
    core : ndarray
            core tensor of the Tucker decomposition
    factors : ndarray list
            list of factors of the Tucker decomposition.
            with ``core.shape[i] == (tensor.shape[i], ranks[i]) for i in modes``

    """
    if rank is None:
        message = "No value given for 'rank'. The decomposition will preserve the original size."
        warnings.warn(message, Warning)
        rank = [tl.shape(tensor)[mode] for mode in modes]
    elif isinstance(rank, int):
        message = "Given only one int for 'rank' instead of a list of {} modes. Using this rank for all modes.".format(len(modes))
        warnings.warn(message, Warning)
        rank = tuple(rank for _ in modes)
    else:
        rank = tuple(rank)

    if mask is not None and init == "svd":
        message = "Masking occurs after initialization. Therefore, random initialization is recommended."
        warnings.warn(message, Warning)

    try:
        svd_fun = tl.SVD_FUNS[svd]
    except KeyError:
        message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
                svd, tl.get_backend(), tl.SVD_FUNS)
        raise ValueError(message)

    # SVD init
    if init == 'svd':
        factors = []
        for index, mode in enumerate(modes):
            eigenvecs, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank[index], random_state=random_state)
            factors.append(eigenvecs)

        # The initial core approximation is needed here for the masking step
        core = multi_mode_dot(tensor, factors, modes=modes, transpose=True)
    elif init == 'random':
        rng = tl.check_random_state(random_state)
        # len(rank) == len(modes) but we still want a core dimension for the modes not optimized
        core_shape = list(tl.shape(tensor))
        for (i, e) in enumerate(modes):
            core_shape[e] = rank[i]
        core = tl.tensor(rng.random_sample(core_shape), **tl.context(tensor))
        factors = [tl.tensor(rng.random_sample((tl.shape(tensor)[mode], rank[index])), **tl.context(tensor)) for (index, mode) in enumerate(modes)]
    else: 
        (core, factors) = init

    rec_errors = []
    norm_tensor = tl.norm(tensor, 2)

    for iteration in range(n_iter_max):
        if mask is not None:
            tensor = tensor*mask + multi_mode_dot(core, factors, modes=modes, transpose=False)*(1-mask)

        for index, mode in enumerate(modes):
            core_approximation = multi_mode_dot(tensor, factors, modes=modes, skip=index, transpose=True)
            eigenvecs, _, _ = svd_fun(unfold(core_approximation, mode), n_eigenvecs=rank[index], random_state=random_state)
            factors[index] = eigenvecs

        core = multi_mode_dot(tensor, factors, modes=modes, transpose=True)

        # The factors are orthonormal and therefore do not affect the reconstructed tensor's norm
        rec_error = sqrt(abs(norm_tensor**2 - tl.norm(core, 2)**2)) / norm_tensor
        rec_errors.append(rec_error)

        if iteration > 1:
            if verbose:
                print('reconstruction error={}, variation={}.'.format(
                    rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

            if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                if verbose:
                    print('converged in {} iterations.'.format(iteration))
                break

    return (core, factors)


def tucker(tensor, rank, fixed_factors=None, n_iter_max=100, init='svd',
           svd='numpy_svd', tol=10e-5, random_state=None, mask=None, verbose=False):
    """Tucker decomposition via Higher Order Orthogonal Iteration (HOI)

        Decomposes `tensor` into a Tucker decomposition:
        ``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_

    Parameters
    ----------
    tensor : ndarray
    rank : None, int or int list
        size of the core tensor, ``(len(ranks) == tensor.ndim)``
        if int, the same rank is used for all modes
    fixed_factors : int list or None, default is None
        if not None, list of modes for which to keep the factors fixed.
        Only valid if a Tucker tensor is provided as init.
    n_iter_max : int
                 maximum number of iteration
    init : {'svd', 'random'}, optional
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD,
        acceptable values in tensorly.SVD_FUNS
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    mask : ndarray
        array of booleans with the same shape as ``tensor`` should be 0 where
        the values are missing and 1 everywhere else. Note:  if tensor is
        sparse, then mask should also be sparse with a fill value of 1 (or
        True).
    verbose : int, optional
        level of verbosity

    Returns
    -------
    core : ndarray of size `ranks`
            core tensor of the Tucker decomposition
    factors : ndarray list
            list of factors of the Tucker decomposition.
            Its ``i``-th element is of shape ``(tensor.shape[i], ranks[i])``

    References
    ----------
    .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
    """    
    if fixed_factors:
        try:
            (core, factors) = init
        except:
            raise ValueError(f'Got fixed_factor={fixed_factors} but no appropriate Tucker tensor was passed for "init".')
        
        fixed_factors = sorted(fixed_factors)
        modes_fixed, factors_fixed = zip(*[(i, f) for (i, f) in enumerate(factors) if i in fixed_factors])
        core = multi_mode_dot(core, factors_fixed, modes=modes_fixed)
        modes, factors = zip(*[(i, f) for (i, f) in enumerate(factors) if i not in fixed_factors])
        init = (core, list(factors))

        core, new_factors = partial_tucker(tensor, modes, rank=rank, n_iter_max=n_iter_max, init=init,
                             svd=svd, tol=tol, random_state=random_state, mask=mask, verbose=verbose)

        factors = list(new_factors)
        for i, e in enumerate(fixed_factors):
            factors.insert(e, factors_fixed[i])
        core = multi_mode_dot(core, factors_fixed, modes=modes_fixed, transpose=True)

        return TuckerTensor((core, factors))

    else:
        modes = list(range(tl.ndim(tensor)))
        # TO-DO validate rank for partial tucker as well
        rank = validate_tucker_rank(tl.shape(tensor), rank=rank)

        core, factors = partial_tucker(tensor, modes, rank=rank, n_iter_max=n_iter_max, init=init,
                            svd=svd, tol=tol, random_state=random_state, mask=mask, verbose=verbose)
        return TuckerTensor((core, factors))

def non_negative_tucker(tensor, rank, n_iter_max=10, init='svd', tol=10e-5,
                        random_state=None, verbose=False, return_errors=False):
    """Non-negative Tucker decomposition

        Iterative multiplicative update, see [2]_

    Parameters
    ----------
    tensor : ``ndarray``
    rank : None, int or int list
        size of the core tensor, ``(len(ranks) == tensor.ndim)``
        if int, the same rank is used for all modes
    n_iter_max : int
        maximum number of iteration
    init : {'svd', 'random'}
    random_state : {None, int, np.random.RandomState}
    verbose : int , optional
        level of verbosity
    ranks : None or int list
    size of the core tensor

    Returns
    -------
    core : ndarray
            positive core of the Tucker decomposition
            has shape `ranks`
    factors : ndarray list
            list of factors of the CP decomposition
            element `i` is of shape ``(tensor.shape[i], rank)``

    References
    ----------
    .. [2] Yong-Deok Kim and Seungjin Choi,
       "Non-negative tucker decomposition",
       IEEE Conference on Computer Vision and Pattern Recognition s(CVPR),
       pp 1-8, 2007
    """
    rank = validate_tucker_rank(tl.shape(tensor), rank=rank)

    epsilon = 10e-12

    # Initialisation
    if init == 'svd':
        core, factors = tucker(tensor, rank)
        nn_factors = [tl.abs(f) for f in factors]
        nn_core = tl.abs(core)
    else:
        rng = tl.check_random_state(random_state)
        core = tl.tensor(rng.random_sample(rank) + 0.01, **tl.context(tensor))  # Check this
        factors = [tl.tensor(rng.random_sample(s), **tl.context(tensor)) for s in zip(tl.shape(tensor), rank)]
        nn_factors = [tl.abs(f) for f in factors]
        nn_core = tl.abs(core)

    norm_tensor = tl.norm(tensor, 2)
    rec_errors = []

    for iteration in range(n_iter_max):
        for mode in range(tl.ndim(tensor)):
            B = tucker_to_tensor((nn_core, nn_factors), skip_factor=mode)
            B = tl.transpose(unfold(B, mode))

            numerator = tl.dot(unfold(tensor, mode), B)
            numerator = tl.clip(numerator, a_min=epsilon, a_max=None)
            denominator = tl.dot(nn_factors[mode], tl.dot(tl.transpose(B), B))
            denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
            nn_factors[mode] *= numerator / denominator

        numerator = tucker_to_tensor((tensor, nn_factors), transpose_factors=True)
        numerator = tl.clip(numerator, a_min=epsilon, a_max=None)
        for i, f in enumerate(nn_factors):
            if i:
                denominator = mode_dot(denominator, tl.dot(tl.transpose(f), f), i)
            else:
                denominator = mode_dot(nn_core, tl.dot(tl.transpose(f), f), i)
        denominator = tl.clip(denominator, a_min=epsilon, a_max=None)
        nn_core *= numerator / denominator

        rec_error = tl.norm(tensor - tucker_to_tensor((nn_core, nn_factors)), 2) / norm_tensor
        rec_errors.append(rec_error)
        if iteration > 1 and verbose:
            print('reconstruction error={}, variation={}.'.format(
                rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

        if iteration > 1 and abs(rec_errors[-2] - rec_errors[-1]) < tol:
            if verbose:
                print('converged in {} iterations.'.format(iteration))
            break

    tensor = TuckerTensor((nn_core, nn_factors))
    if return_errors:
        return tensor, rec_errors
    else:
        return tensor
    
def non_negative_tucker_hals(tensor, rank, n_iter_max=100, init="svd", svd='numpy_svd', tol=1e-8,
                             sparsity_coefficients=None, fixed_modes=None, random_state=None,
                             verbose=False, normalize_factors=False, return_errors=False, exact=False, 
                             algorithm='fista'):
    """
    Non-negative Tucker decomposition

    Uses HALS to update each factor columnwise and uses
    fista or active set algorithm to update the core, see [1]_ 
    
    Parameters
    ----------
    tensor : ndarray
    rank   : int
            number of components
    n_iter_max : int
            maximum number of iteration
    init : {'svd', 'random'}, optional
    svd : str, default is 'numpy_svd'
        function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
    tol : float, optional
          tolerance: the algorithm stops when the variation in
          the reconstruction error is less than the tolerance
        Default: 1e-8
    sparsity_coefficients : array of float (as much as the number of modes)
        The sparsity coefficients are used for each factor
        If algorithm is fista, last coefficient is used when updating core
        If set to None, the algorithm is computed without sparsity
        Default: None
    fixed_modes : array of integers (between 0 and the number of modes)
        Has to be set not to update a factor, 0 and 1 for U and V respectively
        Default: None
    verbose : boolean
        Indicates whether the algorithm prints the successive
        reconstruction errors or not
        Default: False
    return_errors : boolean
        Indicates whether the algorithm should return all reconstruction errors
        and computation time of each iteration or not
        Default: False
    exact : If it is True, the HALS nnls subroutines give results with high precision but it needs high computational cost. 
        If it is False, the algorithm gives an approximate solution.
        Default: False
    algorithm : {'fista', 'active_set'}
         Non negative least square solution to update the core. 
         Default: 'fista'
    Returns
    -------
    factors : ndarray list
            list of positive factors of the CP decomposition
            element `i` is of shape ``(tensor.shape[i], rank)``
    errors: list
        A list of reconstruction errors at each iteration of the algorithm.

    Notes
    -----
    Tucker decomposes a tensor into a core tensor and list of factors:
    .. math::
        \\begin{equation}
            tensor = [| core; factors[0], ... ,factors[-1] |]
        \\end{equation}

    We solve the following problem for each factor:
    .. math::
        \\begin{equation}
            \\min_{tensor >= 0} ||tensor_[i] - factors[i]\\times core_[i] \\times (\\prod_{i\\neq j}(factors[j]))^T||^2
        \\end{equation}

    If we define two variables such as:
    .. math::
            U = core_[i] \\times (\\prod_{i\\neq j}(factors[j]\\times factors[j]^T)) \\
            M = tensor_[i]

    Gradient of the problem becomes:
    .. math::
        \\begin{equation}
            \\delta = -U^TM + factors[i] \\times U^TU
        \\end{equation}

    In order to calculate UTU and UTM, we define two variables:
    .. math::
        \\begin{equation}
            core_cross = \prod_{i\\neq j}(core_[i] \\times (\\prod_{i\\neq j}(factors[j]\\times factors[j]^T)) \\
            tensor_cross =  \prod_{i\\neq j} tensor_[i] \\times factors_[i]
        \\end{equation}
    Then UTU and UTM becomes:
    .. math::
        \\begin{equation}
            UTU = core_cross_[j] \\times core_[j]^T  \\
            UTM =  (tensor_cross_[j] \\times \\times core_[j]^T)^T
        \\end{equation}
    References
    ----------
    .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
       SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
    """
    rank = validate_tucker_rank(tl.shape(tensor), rank=rank)
    n_modes = tl.ndim(tensor)
    if sparsity_coefficients is None or len(sparsity_coefficients) != n_modes:
        sparsity_coefficients = [sparsity_coefficients] * n_modes

    if fixed_modes is None:
        fixed_modes = []

    # Avoiding errors
    for fixed_value in fixed_modes:
        sparsity_coefficients[fixed_value] = None
    # Generating the mode update sequence
    modes = [mode for mode in range(tl.ndim(tensor)) if mode not in fixed_modes]

    nn_core, nn_factors = initialize_tucker(tensor, rank, modes, init=init, svd=svd, random_state=random_state, 
                                            non_negative=True)
    # initialisation - declare local variables
    norm_tensor = tl.norm(tensor, 2)
    rec_errors = []

    # Iterate over one step of NTD
    for iteration in range(n_iter_max):
        # One pass of least squares on each updated mode
        for mode in modes:

            # Computing Hadamard of cross-products
            pseudo_inverse = nn_factors.copy()
            for i, factor in enumerate(nn_factors):
                if i != mode:
                    pseudo_inverse[i] = tl.dot(tl.conj(tl.transpose(factor)), factor)
            # UtU
            core_cross = multi_mode_dot(nn_core, pseudo_inverse, skip=mode)
            UtU = tl.dot(unfold(core_cross, mode), tl.transpose(unfold(nn_core, mode)))

            # UtM
            tensor_cross = multi_mode_dot(tensor, nn_factors, skip=mode, transpose=True)
            MtU = tl.dot(unfold(tensor_cross, mode), tl.transpose(unfold(nn_core, mode)))
            UtM = tl.transpose(MtU)

            # Call the hals resolution with nnls, optimizing the current mode
            nn_factor, _, _, _ = hals_nnls(UtM, UtU, tl.transpose(nn_factors[mode]),
                                           n_iter_max=100, sparsity_coefficient=sparsity_coefficients[mode],
                                           exact=exact)
            nn_factors[mode] = tl.transpose(nn_factor)
        # updating core
        if algorithm == 'fista':
            pseudo_inverse[-1] = tl.dot(tl.transpose(nn_factors[-1]), nn_factors[-1])
            core_estimation = multi_mode_dot(tensor, nn_factors, transpose=True)
            learning_rate = 1
            
            for MtM in pseudo_inverse:
                learning_rate *= 1 / (tl.partial_svd(MtM)[1][0])
            nn_core = fista(core_estimation, pseudo_inverse, x=nn_core, n_iter_max=n_iter_max,
                            sparsity_coef=sparsity_coefficients[-1], lr=learning_rate,)
        if algorithm == 'active_set':
            pseudo_inverse[-1] = tl.dot(tl.transpose(nn_factors[-1]), nn_factors[-1])
            core_estimation_vec = tl.base.tensor_to_vec(tl.tenalg.mode_dot(tensor_cross, tl.transpose(nn_factors[modes[-1]]), modes[-1]))
            pseudo_inverse_kr = tl.tenalg.kronecker(pseudo_inverse)
            vectorcore = active_set_nnls(core_estimation_vec, pseudo_inverse_kr, x=nn_core, n_iter_max=n_iter_max)
            nn_core = tl.reshape(vectorcore, tl.shape(nn_core))
        
        # Adding the l1 norm value to the reconstruction error
        sparsity_error = 0
        for index, sparse in enumerate(sparsity_coefficients):
            if sparse:
                sparsity_error += 2 * (sparse * tl.norm(nn_factors[index], order=1))
        # error computation
        rec_error = tl.norm(tensor - tucker_to_tensor((nn_core, nn_factors)), 2) / norm_tensor
        rec_errors.append(rec_error)

        if iteration > 1:
            if verbose:
                print('reconstruction error={}, variation={}.'.format(
                    rec_errors[-1], rec_errors[-2] - rec_errors[-1]))

            if tol and abs(rec_errors[-2] - rec_errors[-1]) < tol:
                if verbose:
                    print('converged in {} iterations.'.format(iteration))
                break

    tensor = TuckerTensor((nn_core, nn_factors))
    if return_errors:
        return tensor, rec_errors
    else:
        return tensor


class Tucker(DecompositionMixin):
    """Tucker decomposition via Higher Order Orthogonal Iteration (HOI).

            Decomposes `tensor` into a Tucker decomposition:
            ``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_

        Parameters
        ----------
        tensor : ndarray
        rank : None, int or int list
            size of the core tensor, ``(len(ranks) == tensor.ndim)``
            if int, the same rank is used for all modes
        non_negative : bool, default is False
            if True, uses a non-negative Tucker via iterative multiplicative updates
            otherwise, uses a Higher-Order Orthogonal Iteration.
        fixed_factors : int list or None, default is None
            if not None, list of modes for which to keep the factors fixed.
            Only valid if a Tucker tensor is provided as init.
        n_iter_max : int
                    maximum number of iteration
        init : {'svd', 'random'}, optional
        svd : str, default is 'numpy_svd'
            ignore if non_negative is True
            function to use to compute the SVD,
            acceptable values in tensorly.SVD_FUNS
        tol : float, optional
            tolerance: the algorithm stops when the variation in
            the reconstruction error is less than the tolerance
        random_state : {None, int, np.random.RandomState}
        verbose : int, optional
            level of verbosity

        Returns
        -------
        core : ndarray of size `ranks`
                core tensor of the Tucker decomposition
        factors : ndarray list
                list of factors of the Tucker decomposition.
                Its ``i``-th element is of shape ``(tensor.shape[i], ranks[i])``

        References
        ----------
        .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
        SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
        """
    def __init__(self, rank=None, n_iter_max=100,
                 init='svd', svd='numpy_svd', tol=10e-5, fixed_factors=None,
                 random_state=None, mask=None, verbose=False):
        self.rank = rank
        self.n_iter_max = n_iter_max
        self.init = init
        self.svd = svd
        self.tol = tol
        self.random_state = random_state
        self.mask = mask
        self.verbose = verbose

    def fit_transform(self, tensor):
        tucker_tensor = tucker(tensor, rank=self.rank,
                            n_iter_max=self.n_iter_max,
                            init=self.init,
                            svd=self.svd,
                            tol=self.tol,
                            random_state=self.random_state,
                            mask=self.mask,
                            verbose=self.verbose)        
        self.decomposition_ = tucker_tensor
        return tucker_tensor

    # def transform(self, tensor):
    #     _, factors = self.decomposition_
    #     return tlg.multi_mode_dot(tensor, factors, transpose=True)

    # def inverse_transform(self, tensor):
    #     _, factors = self.decomposition_
    #     return tlg.multi_mode_dot(tensor, factors)

    def __repr__(self):
        return f'Rank-{self.rank} Tucker decomposition via HOOI.'


class Tucker_NN(DecompositionMixin):
    """Non-Negative Tucker decomposition via iterative multiplicative update.

        Decomposes `tensor` into a Tucker decomposition:
        ``tensor = [| core; factors[0], ...factors[-1] |]`` [1]_

    Parameters
    ----------
    tensor : ndarray
    rank : None, int or int list
        size of the core tensor, ``(len(ranks) == tensor.ndim)``
        if int, the same rank is used for all modes
    non_negative : bool, default is False
        if True, uses a non-negative Tucker via iterative multiplicative updates
        otherwise, uses a Higher-Order Orthogonal Iteration.
    n_iter_max : int
                maximum number of iteration
    init : {'svd', 'random'}, optional
    svd : str, default is 'numpy_svd'
        ignore if non_negative is True
        function to use to compute the SVD,
        acceptable values in tensorly.SVD_FUNS
    tol : float, optional
        tolerance: the algorithm stops when the variation in
        the reconstruction error is less than the tolerance
    random_state : {None, int, np.random.RandomState}
    verbose : int, optional
        level of verbosity

    Returns
    -------
    core : ndarray of size `ranks`
            core tensor of the Tucker decomposition
    factors : ndarray list
            list of factors of the Tucker decomposition.
            Its ``i``-th element is of shape ``(tensor.shape[i], ranks[i])``

    References
    ----------
    .. [1] tl.G.Kolda and B.W.Bader, "Tensor Decompositions and Applications",
    SIAM REVIEW, vol. 51, n. 3, pp. 455-500, 2009.
    """
    def __init__(self, rank=None, n_iter_max=100,
                 init='svd', svd='numpy_svd', tol=10e-5, 
                 random_state=None, verbose=False):
        self.rank = rank
        self.n_iter_max = n_iter_max
        self.init = init
        self.svd = svd
        self.tol = tol
        self.random_state = random_state
        self.verbose = verbose

    def fit_transform(self, tensor):
        tucker_tensor = non_negative_tucker(tensor, rank=self.rank,
                            n_iter_max=self.n_iter_max,
                            init=self.init,
                            tol=self.tol,
                            random_state=self.random_state,
                            verbose=self.verbose)
        self.decomposition_ = tucker_tensor
        return tucker_tensor

    # def transform(self, tensor):
    #     _, factors = self.decomposition_
    #     return tlg.multi_mode_dot(tensor, factors, transpose=True)

    # def inverse_transform(self, tensor):
    #     _, factors = self.decomposition_
    #     return tlg.multi_mode_dot(tensor, factors)

    def __repr__(self):
        return f'Rank-{self.rank} Non-Negative Tucker decomposition via multiplicative updates.'
back to top