Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/ruqihuang/AdjointFmaps
28 May 2025, 19:07:31 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
Revision d41efaa1636fb8cc0da8f09d89f4a1cae0172320 authored by ruqihuang on 24 August 2017, 07:39:27 UTC, committed by ruqihuang on 24 August 2017, 07:39:27 UTC
Update readme
claim that the package is only pre-compiled for Mac
1 parent 702a390
  • Files
  • Changes
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • d41efaa1636fb8cc0da8f09d89f4a1cae0172320
    No releases to show
  • cece858
  • /
  • external
  • /
  • minconf
  • /
  • TMP_examples.m
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
  • snapshot
origin badgerevision badge
swh:1:rev:d41efaa1636fb8cc0da8f09d89f4a1cae0172320
origin badgedirectory badge Iframe embedding
swh:1:dir:dffdf7fcd64597f4a2afc0afdee7259cccaf948d
origin badgecontent badge Iframe embedding
swh:1:cnt:5041eef66fc6f01af2c2df908277b5fe8c50d871
origin badgesnapshot badge
swh:1:snp:f8058bb26ca7dfa4e9342cbbd0758552e7f5f26e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: d41efaa1636fb8cc0da8f09d89f4a1cae0172320 authored by ruqihuang on 24 August 2017, 07:39:27 UTC
Update readme
Tip revision: d41efaa
TMP_examples.m
clear all
close all

%% Non-negative Least Squares
% Solve min_w (1/2)norm(X*w-y)^2, s.t. w >= 0.

nInstances = 1000;
nVars = 100;
X = randn(nInstances,nVars);
w = randn(nVars,1);
y = X*w + randn(nInstances,1);

funObj = @(w)SquaredError(w,X,y);
LB = zeros(nVars,1);
UB = inf(nVars,1);

fprintf('Solving non-negative least-squares problem...\n');
w = minConf_TMP(funObj,zeros(nVars,1),LB,UB);
stem(w);title('Non-negative least-squares coefficients');
pause

%% L1-Regularization Least Squares
% Solve min_w (1/2)norm(X*w-y)^2 + lambda*sum(abs(w))
%  by formulating as
%       min_w (1/2)norm([X -X]*w - y)^2 + lambda*sum(w), s.t. w >= 0

lambda = 1000*ones(nVars,1);

regObj = @(w)nonNegGrad(w,lambda,funObj);
LB = zeros(2*nVars,1);
UB = inf(2*nVars,1);

fprintf('Solving L1-regularized least-squares problem...\n');
w = minConf_TMP(regObj,zeros(2*nVars,1),LB,UB);
w = w(1:nVars)-w(nVars+1:end);
stem(w);title('L1-regularized least-squares coefficients');
pause

%% Logistic Regression with Bounded Coefficients
% Solve min_w sum_i log(1 + exp(-y(i)*w*X(i,:)), s.t. -1 <= w <= 1

y = sign(y);

funObj = @(w)LogisticLoss(w,X,y);
LB = -ones(nVars,1);
UB = ones(nVars,1);

fprintf('Solving bounded logistic regression problem...\n');
w = minConf_TMP(funObj,zeros(nVars,1),LB,UB);
stem(w);title('Bounded logistic regression coefficients');
pause


%% Dual Support Vector Machines (no bias or regularized bias)
% Solve min_alpha (1/2)alpha'*A*alpha - sum(alpha), s.t. 0 <= alpha <= C,
%   where A_ij = y_iy_jK(x_i,x_j), and we use the RBF kernel with sigma = 1.

% Generate data
nInstances = 250;
[X,y] = makeData('classificationNonlinear',nInstances,2,2);

sigma = 1;
K = kernelRBF(X,X,sigma);
A = diag(y)*K*diag(y);

C = 1;
funObj = @(alpha)dualSVMLoss_noBias(alpha,A,y);
LB = zeros(nInstances,1);
UB = C*ones(nInstances,1);

fprintf('Solving dual SVM problem (no bias)...\n');
alpha = minConf_TMP(funObj,zeros(nInstances,1),LB,UB);
stem(alpha);title('Dual SVM coefficients');

yhat = sign(sum((diag(alpha.*y)*K)))';
trainErr = sum(yhat~=y)/numel(y)
pause

%% Ordinal Logistic Regression
% Solve min_{w,gamma} -sum(log(F(gamma(y+1) - X*w) - F(gamma(y) - X*w))),
%  where F(x) = 1/(1+exp(-x), -inf < 0 < gamma(1) < gamma(2) < ... < inf

% Generate Data
nInstances = 1000;
nVars = 10;
nClasses = 5;
X = randn(nInstances,nVars);
w = randn(nVars,1);
gamma = sort(randn(nClasses-1,1));
z = X*w;
y = zeros(nInstances,1);
y(z < gamma(1)) = 1;
for class = 2:nClasses-1
    y(z >= gamma(class-1) & z < gamma(class)) = class;
end
y(z >= gamma(nClasses-1)) = nClasses;

% Standardize columns and add bias
X = standardizeCols(X);
X = [ones(nInstances,1) X];
nVars = nVars+1;

% First try Multinomial Logistic
fprintf('Training multinomial logistic classifier\n');
model = classificationSoftmax(X,y,struct('nClasses',nClasses));
yhat = model.predictFunc(model,X);
trainErr_MLR = sum(abs(yhat-y));

% Ordinal Logistic
funObj = @(w)OrdinalLogisticLoss2(w,X,y,nClasses);
LB = [-inf(nVars,1);zeros(nClasses-2,1)];
UB = inf(nVars+nClasses-2,1);
w_init = zeros(nVars,1);
gamma_init = sort(rand(nClasses-2,1));
fprintf('Training ordinal logistic classifier\n');
wGamma = minConf_TMP(funObj,[w_init;gamma_init],LB,UB);
w = wGamma(1:nVars);
gamma = [-inf;0;cumsum(wGamma(nVars+1:end));inf];

% Predict labels on training data
z = X*w;
yhat = zeros(nInstances,1);
for c = 1:nClasses
   yhat(z > gamma(c)) = c;
end
trainErr_OLR = sum(abs(yhat-y));

fprintf('Training error of multinomial logistic regression: %f\n',trainErr_MLR/nInstances);
fprintf('Training error of ordinal logistic regression: %f\n',trainErr_OLR/nInstances);
pause

%% Kernel Ordinal Logistic Regression

% Generate data
nInstances = 500;
nVars = 2;
nClasses = 5;
X = randn(nInstances,nVars);
nExamplePoints = 3;
examplePoints = randn(nExamplePoints,nVars);
thresholds = [0;cumsum(2*rand(nClasses-1,1))];
y = zeros(nInstances,1);
for i = 1:nInstances
    dists = sum((repmat(X(i,:),nExamplePoints,1) - examplePoints).^2,2);
    y(i,1) = max(find(min(dists) > thresholds));
end
X = [ones(nInstances,1) standardizeCols(X)];

nTrain = nInstances/2;
Xtrain = X(1:nTrain,:);
ytrain = y(1:nTrain);
Xtest = X(nTrain+1:end,:);
ytest = y(nTrain+1:end);

% First try kernel multinomial logistic
sigma = 1;
lambda = 1e-5;
model = classificationKernelSoftmax(Xtrain,ytrain,struct('nClasses',nClasses,'kernelFunc',@kernelRBF,'kernelArgs',sigma,'lambda',lambda));
yhat = model.predictFunc(model,Xtest);
testErr_KMLR = sum(yhat~=ytest)/length(ytest);
testDist_KMLR = sum(abs(yhat-ytest))/length(ytest);

% Now try kernel ordinal logistic
Ktrain = kernelRBF(Xtrain,Xtrain,sigma);

% Set up problem
w = zeros(nTrain,1);
gamma = ones(nClasses-2,1);
LB = [-inf(nTrain,1);zeros(nClasses-2,1)];
UB = inf(nTrain+nClasses-2,1);
funObj_sub = @(w)OrdinalLogisticLoss2(w,Ktrain,ytrain,nClasses);
funObj = @(w)penalizedKernelL2_subset(w,Ktrain,1:nTrain,funObj_sub,lambda);

% Solve optiamization
wGamma = minConf_TMP(funObj,[w;gamma],LB,UB);
w = wGamma(1:nTrain);
gamma = [-inf;0;cumsum(wGamma(nTrain+1:end));inf];

% Predict on test data
Ktest = kernelRBF(Xtest,Xtrain,sigma);
z = Ktest*w;
yhat = zeros(size(ytest));
for c = 1:nClasses
   yhat(z > gamma(c)) = c; 
end
testErr_KOLR = sum(yhat~=ytest)/length(ytest);
testDist_KOLR = sum(abs(yhat-ytest))/length(ytest);

fprintf('Test error of kernel multinomial logistic regression: %f (distance = %f)\n',testErr_KMLR,testDist_KMLR);
fprintf('Test error of kernel ordinal logistic regression: %f (distance = %f)\n',testErr_KOLR,testDist_KOLR);
pause

%% Graphical LASSO
% Solve min_{W positive-definite} logdet(sigma+W), s.t. |W_ij| <= lambda

% Load data
load 20news_w100.mat
docs = full(documents)';
[nSamples,nVars] = size(docs);
mu = mean(docs);
centered = docs-repmat(mu,16242,1);
sigma = (1/nSamples)*(centered'*centered);

% Set up and solve problem
lambda = .01;
funObj = @(W)logdetFunction(W,sigma);
LB = -lambda*ones(nVars);
UB = lambda*ones(nVars);
W = eye(nVars);
W(:) = minConf_TMP(funObj,W(:),LB(:),UB(:));
K = inv(sigma+W);
K(abs(W) < lambda) = 0;
clf;
drawGraph(K~=0,'labels',wordlist);
pause

%% Associative Conditional Random Fields (trained with pseudo-likelihood)
% Optimize pseudo-likelihood in CRF with Ising potentials, subject to
% constraint that edges are sub-modular (and hence the optimal MAP can be
% found using graph cuts)

% Load Data
load X.mat
y = int32(1+X);
X = X + randn(size(X))/2;
[nRows,nCols] = size(X);
nNodes = nRows*nCols;
nStates = 2;
y = reshape(y,[1 1 nNodes]);
X = reshape(X,1,1,nNodes);

% Set up problem in UGM
adj = latticeAdjMatrix(nRows,nCols);
edgeStruct = UGM_makeEdgeStruct(adj,nStates);
tied = 1;
Xnode = [ones(1,1,nNodes) UGM_standardizeCols(X,tied)];
sharedFeatures = [1 0];
Xedge = UGM_makeEdgeFeaturesInvAbsDif(Xnode,edgeStruct.edgeEnds,sharedFeatures);
ising = 1;
[nodeMap,edgeMap,w] = UGM_makeCRFmaps(Xnode,Xedge,edgeStruct,ising,tied);
nParams = length(w);
funObj = @(w)UGM_CRF_PseudoNLL(w,Xnode,Xedge,y,nodeMap,edgeMap,edgeStruct);
UB = inf(nParams,1);
LB = [-inf;-inf;0;0];
w = minConf_TMP(funObj,w,LB,UB)

[nodePot,edgePot] = UGM_CRF_makePotentials(w,Xnode,Xedge,nodeMap,edgeMap,edgeStruct,1);
MAP = UGM_Decode_GraphCut(nodePot,edgePot,edgeStruct);
imagesc(reshape(X,nRows,nCols));colormap gray
figure
imagesc(reshape(MAP,nRows,nCols));colormap gray
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API