Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/ruqihuang/AdjointFmaps
28 May 2025, 19:07:31 UTC
  • Code
  • Branches (1)
  • Releases (0)
  • Visits
Revision d41efaa1636fb8cc0da8f09d89f4a1cae0172320 authored by ruqihuang on 24 August 2017, 07:39:27 UTC, committed by ruqihuang on 24 August 2017, 07:39:27 UTC
Update readme
claim that the package is only pre-compiled for Mac
1 parent 702a390
  • Files
  • Changes
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • d41efaa1636fb8cc0da8f09d89f4a1cae0172320
    No releases to show
  • cece858
  • /
  • external
  • /
  • minconf
  • /
  • minConf_PQN.m
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
  • snapshot
origin badgerevision badge
swh:1:rev:d41efaa1636fb8cc0da8f09d89f4a1cae0172320
origin badgedirectory badge Iframe embedding
swh:1:dir:dffdf7fcd64597f4a2afc0afdee7259cccaf948d
origin badgecontent badge Iframe embedding
swh:1:cnt:d5bb9b0ba32f92209a4ce4d9c739c383d86a7bf3
origin badgesnapshot badge
swh:1:snp:f8058bb26ca7dfa4e9342cbbd0758552e7f5f26e
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: d41efaa1636fb8cc0da8f09d89f4a1cae0172320 authored by ruqihuang on 24 August 2017, 07:39:27 UTC
Update readme
Tip revision: d41efaa
minConf_PQN.m
function [x,f,funEvals] = minConf_PQN(funObj,x,funProj,options)
% function [x,f] = minConf_PQN(funObj,funProj,x,options)
%
% Function for using a limited-memory projected quasi-Newton to solve problems of the form
%   min funObj(x) s.t. x in C
%
% The projected quasi-Newton sub-problems are solved the spectral projected
% gradient algorithm
%
%   @funObj(x): function to minimize (returns gradient as second argument)
%   @funProj(x): function that returns projection of x onto C
%
%   options:
%       verbose: level of verbosity (0: no output, 1: final, 2: iter (default), 3:
%       debug)
%       optTol: tolerance used to check for optimality (default: 1e-5)
%       progTol: tolerance used to check for progress (default: 1e-9)
%       maxIter: maximum number of calls to funObj (default: 500)
%       maxProject: maximum number of calls to funProj (default: 100000)
%       numDiff: compute derivatives numerically (0: use user-supplied
%       derivatives (default), 1: use finite differences, 2: use complex
%       differentials)
%       suffDec: sufficient decrease parameter in Armijo condition (default: 1e-4)
%       corrections: number of lbfgs corrections to store (default: 10)
%       adjustStep: use quadratic initialization of line search (default: 0)
%       bbInit: initialize sub-problem with Barzilai-Borwein step (default: 1)
%       SPGoptTol: optimality tolerance for SPG direction finding (default: 1e-6)
%       SPGiters: maximum number of iterations for SPG direction finding (default:10)

nVars = length(x);

% Set Parameters
if nargin < 4
    options = [];
end
[verbose,numDiff,optTol,progTol,maxIter,maxProject,suffDec,corrections,adjustStep,...
    SPGoptTol,SPGprogTol,SPGiters,SPGtestOpt] = ...
    myProcessOptions(...
    options,'verbose',2,'numDiff',0,'optTol',1e-5,'progTol',1e-9,'maxIter',500,'maxProject',100000,'suffDec',1e-4,...
    'corrections',10,'adjustStep',0,'SPGoptTol',1e-6,'SPGprogTol',1e-10,'SPGiters',10,'SPGtestOpt',0);

% Output Parameter Settings
if verbose >= 3
   fprintf('Running PQN...\n');
   fprintf('Number of L-BFGS Corrections to store: %d\n',corrections);
   fprintf('Maximum number of SPG iterations: %d\n',SPGiters);
   fprintf('SPG optimality tolerance: %.2e\n',SPGoptTol);
   fprintf('SPG progress tolerance: %.2e\n',SPGprogTol);
   fprintf('PQN optimality tolerance: %.2e\n',optTol);
   fprintf('PQN progress tolerance: %.2e\n',progTol);
   fprintf('Quadratic initialization of line search: %d\n',adjustStep);
   fprintf('Maximum number of function evaluations: %d\n',maxIter);
   fprintf('Maximum number of projections: %d\n',maxProject);
end

% Output Log
if verbose >= 2
        fprintf('%10s %10s %10s %15s %15s %15s\n','Iteration','FunEvals','Projections','Step Length','Function Val','Opt Cond');
end

% Make objective function (if using numerical derivatives)
funEvalMultiplier = 1;
if numDiff
    if numDiff == 2
        useComplex = 1;
    else
        useComplex = 0;
    end
    funObj = @(x)autoGrad(x,useComplex,funObj);
    funEvalMultiplier = nVars+1-useComplex;
end

% Project initial parameter vector
x = funProj(x);
projects = 1;

% Evaluate initial parameters
[f,g] = funObj(x);
funEvals = 1;

% Check Optimality of Initial Point
projects = projects+1;
if max(abs(funProj(x-g)-x)) < optTol
    if verbose >= 1
        fprintf('First-Order Optimality Conditions Below optTol at Initial Point\n');
    end
    return;
end

i = 1;
while funEvals <= maxIter

    % Compute Step Direction
    if i == 1
        p = funProj(x-g);
        projects = projects+1;
        S = zeros(nVars,0);
        Y = zeros(nVars,0);
        Hdiag = 1;
    else
        y = g-g_old;
        s = x-x_old;
        [S,Y,Hdiag] = lbfgsUpdate(y,s,corrections,verbose==3,S,Y,Hdiag);

        % Make Compact Representation
        k = size(Y,2);
        L = zeros(k);
        for j = 1:k
            L(j+1:k,j) = S(:,j+1:k)'*Y(:,j);
        end
        N = [S/Hdiag Y];
        M = [S'*S/Hdiag L;L' -diag(diag(S'*Y))];
        HvFunc = @(v)lbfgsHvFunc2(v,Hdiag,N,M);
            
        % Solve Sub-problem
        [p,subProjects] = solveSubProblem(x,g,HvFunc,funProj,SPGoptTol,SPGprogTol,SPGiters,SPGtestOpt);
        projects = projects+subProjects;
    end
    d = p-x;
    g_old = g;
    x_old = x;

    % Check that Progress can be made along the direction
    gtd = g'*d;
    if gtd > -progTol
        if verbose >= 1
            fprintf('Directional Derivative below progTol\n');
        end
        break;
    end

    % Select Initial Guess to step length
    if i == 1 || adjustStep == 0
       t = 1; 
    else
        t = min(1,2*(f-f_old)/gtd);
    end
    
    % Bound Step length on first iteration
    if i == 1
        t = min(1,1/sum(abs(g)));
    end

    % Evaluate the Objective and Gradient at the Initial Step
    if t == 1
        x_new = p;
    else
        x_new = x + t*d;
    end
    [f_new,g_new] = funObj(x_new);
    funEvals = funEvals+1;

    % Backtracking Line Search
    f_old = f;
    while f_new > f + suffDec*g'*(x_new-x) || ~isLegal(f_new)
        temp = t;
        
        % Backtrack to next trial value
        if ~isLegal(f_new) || ~isLegal(g_new)
            if verbose == 3
                fprintf('Halving Step Size\n');
            end
            t = t/2;
        else
            if verbose == 3
                fprintf('Cubic Backtracking\n');
            end
            t = polyinterp([0 f gtd; t f_new g_new'*d]);
        end

        % Adjust if change is too small/large
        if t < temp*1e-3
            if verbose == 3
                fprintf('Interpolated value too small, Adjusting\n');
            end
            t = temp*1e-3;
        elseif t > temp*0.6
            if verbose == 3
                fprintf('Interpolated value too large, Adjusting\n');
            end
            t = temp*0.6;
        end

        % Check whether step has become too small
        if max(abs(t*d)) < progTol || t == 0
            if verbose == 3
                fprintf('Line Search failed\n');
            end
            t = 0;
            f_new = f;
            g_new = g;
            break;
        end

        % Evaluate New Point
        f_prev = f_new;
        t_prev = temp;
        x_new = x + t*d;
        [f_new,g_new] = funObj(x_new);
        funEvals = funEvals+1;

    end

    % Take Step
    x = x_new;
    f = f_new;
    g = g_new;
    
    optCond = max(abs(funProj(x-g)-x));
    projects = projects+1;

    % Output Log
    if verbose >= 2
            fprintf('%10d %10d %10d %15.5e %15.5e %15.5e\n',i,full(funEvals*funEvalMultiplier),full(projects),full(t),full(f),full(optCond));
    end

    % Check optimality
        if optCond < optTol
            if verbose >= 1
            fprintf('First-Order Optimality Conditions Below optTol\n');
            end
            break;
        end

    if max(abs(t*d)) < progTol
        if verbose >= 1
            fprintf('Step size below progTol\n');
        end
        break;
    end

    if abs(f-f_old) < progTol
        if verbose >= 1
            fprintf('Function value changing by less than progTol\n');
        end
        break;
    end

    if funEvals*funEvalMultiplier > maxIter
        if verbose >= 1
            fprintf('Function Evaluations exceeds maxIter\n');
        end
        break;
    end
    
    if projects > maxProject
        if verbose >= 1
            fprintf('Number of projections exceeds maxProject\n');
        end
        break;
    end
    
    i = i + 1;
%    pause
end
end


function [p,subProjects] = solveSubProblem(x,g,H,funProj,optTol,progTol,maxIter,testOpt)
% Uses SPG to solve for projected quasi-Newton direction
options.verbose = 0;
options.optTol = optTol;
options.progTol = progTol;
options.maxIter = maxIter;
options.testOpt = testOpt;
options.feasibleInit = 1;

funObj = @(p)subHv(p,x,g,H);
[p,f,funEvals,subProjects] = minConf_SPG(funObj,x,funProj,options);
end

function [f,g] = subHv(p,x,g,HvFunc)
d = p-x;
Hd = HvFunc(d);
f = g'*d + (1/2)*d'*Hd;
g = g + Hd;
end
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API