https://github.com/geodynamics/citcoms
Revision db34189a4cc8afa725438397e42cb391338a2f06 authored by Leif Strand on 27 July 2005, 09:06 UTC, committed by Leif Strand on 27 July 2005, 09:06 UTC
1 parent bdc080d
Raw File
Tip revision: db34189a4cc8afa725438397e42cb391338a2f06 authored by Leif Strand on 27 July 2005, 09:06 UTC
Merged changes fron trunk: "[...] uniprocessor examples work again [...]".
Tip revision: db34189
Shape_functions.c
/*
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * 
 *<LicenseText>
 *=====================================================================
 *
 *                              CitcomS
 *                 ---------------------------------
 *
 *                              Authors:
 *           Louis Moresi, Shijie Zhong, Lijie Han, Eh Tan,
 *           Clint Conrad, Michael Gurnis, and Eun-seo Choi
 *          (c) California Institute of Technology 1994-2005
 *
 *        By downloading and/or installing this software you have
 *       agreed to the CitcomS.py-LICENSE bundled with this software.
 *             Free for non-commercial academic research ONLY.
 *      This program is distributed WITHOUT ANY WARRANTY whatsoever.
 *
 *=====================================================================
 *
 *  Copyright June 2005, by the California Institute of Technology.
 *  ALL RIGHTS RESERVED. United States Government Sponsorship Acknowledged.
 * 
 *  Any commercial use must be negotiated with the Office of Technology
 *  Transfer at the California Institute of Technology. This software
 *  may be subject to U.S. export control laws and regulations. By
 *  accepting this software, the user agrees to comply with all
 *  applicable U.S. export laws and regulations, including the
 *  International Traffic and Arms Regulations, 22 C.F.R. 120-130 and
 *  the Export Administration Regulations, 15 C.F.R. 730-744. User has
 *  the responsibility to obtain export licenses, or other export
 *  authority as may be required before exporting such information to
 *  foreign countries or providing access to foreign nationals.  In no
 *  event shall the California Institute of Technology be liable to any
 *  party for direct, indirect, special, incidental or consequential
 *  damages, including lost profits, arising out of the use of this
 *  software and its documentation, even if the California Institute of
 *  Technology has been advised of the possibility of such damage.
 * 
 *  The California Institute of Technology specifically disclaims any
 *  warranties, including the implied warranties or merchantability and
 *  fitness for a particular purpose. The software and documentation
 *  provided hereunder is on an "as is" basis, and the California
 *  Institute of Technology has no obligations to provide maintenance,
 *  support, updates, enhancements or modifications.
 *
 *=====================================================================
 *</LicenseText>
 * 
 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 */
/*  Functions which construct the shape function values at all of the gauss
    points in the element (including the reduced quadrature points). The element in question is
    biquadratic in the velocities and therefore bilinear in the pressures. 
    
    To change elements it is necessary to change this file: Shape_functions.c,
    and the element-data header file : element_definitions.h  but it should not be
    necessary to change the main calculation/setup/solving machinery.		 */

#include <math.h>
#include "element_definitions.h"				
#include "global_defs.h"
 
/*  =======================================================
    Function creating shape_fn data in form of a structure
    =======================================================*/

void construct_shape_functions(E)
     struct All_variables *E;
{	
  double lpoly(),lpolydash();
  int i,j,k,d,dd;
  int remapj,remapk;

  /* first zero ALL entries, even those not used in 2d. */

  for(i=0;i<GNVI;i++)
    { E->N.vpt[i] = 0.0; 
      E->Nx.vpt[i] = 0.0;
      E->Nx.vpt[GNVI+i] = 0.0;
      E->Nx.vpt[2*GNVI+i] = 0.0; 
    }
  
   for(i=0;i<GNPI;i++)
    { E->N.ppt[i] = 0.0; 
      E->Nx.ppt[i] = 0.0;
      E->Nx.ppt[GNPI+i] = 0.0;
      E->Nx.ppt[2*GNPI+i] = 0.0; 
    }
  
  for(i=0;i<GN1VI;i++)
    { E->M.vpt[i] = 0.0; 
      E->Mx.vpt[i] = 0.0;
      E->Mx.vpt[GN1VI+i] = 0.0;
    }
  
   for(i=0;i<GN1PI;i++)
    { E->M.ppt[i] = 0.0; 
      E->Mx.ppt[i] = 0.0;
      E->Mx.ppt[GN1PI+i] = 0.0;
    }
  
  for(i=0;i<GN1VI;i++)
    { E->L.vpt[i] = 0.0; 
      E->Lx.vpt[i] = 0.0;
      E->Lx.vpt[GN1VI+i] = 0.0;
    }

  for(i=0;i<GNVI;i++)
    { E->NM.vpt[i] = 0.0; 
      E->NMx.vpt[i] = 0.0;
      E->NMx.vpt[GNVI+i] = 0.0;
      E->NMx.vpt[2*GNVI+i] = 0.0; 
    }

  for(i=1;i<=enodes[E->mesh.nsd];i++)   {
   /*  for each node  */

      for(j=1;j<=vpoints[E->mesh.nsd];j++)  { 
 
	  /* for each integration point  */
         E->N.vpt[GNVINDEX(i,j)] = 1.0;
         for(d=1;d<=E->mesh.nsd;d++)   
             E->N.vpt[GNVINDEX(i,j)] *=  
                   lpoly(bb[d-1][i],g_point[j].x[d-1]);
	      
         for(dd=1;dd<=E->mesh.nsd;dd++) {
             E->Nx.vpt[GNVXINDEX(dd-1,i,j)] = lpolydash(bb[dd-1][i],g_point[j].x[dd-1]);
             for(d=1;d<=E->mesh.nsd;d++)
                if (d != dd)
                   E->Nx.vpt[GNVXINDEX(dd-1,i,j)] *= lpoly(bb[d-1][i],g_point[j].x[d-1]);
	     }
         } 
 
     
      for(j=1;j<=ppoints[E->mesh.nsd];j++)  {
	  /* for each p-integration point  */
         E->N.ppt[GNPINDEX(i,j)] = 1.0;
         for(d=1;d<=E->mesh.nsd;d++) 
            E->N.ppt[GNPINDEX(i,j)] *=  
                 lpoly(bb[d-1][i],p_point[j].x[d-1]);
	   
         for(dd=1;dd<=E->mesh.nsd;dd++) {
            E->Nx.ppt[GNPXINDEX(dd-1,i,j)] = lpolydash(bb[dd-1][i],p_point[j].x[dd-1]);
            for(d=1;d<=E->mesh.nsd;d++)
               if (d != dd)  
                  E->Nx.ppt[GNPXINDEX(dd-1,i,j)] *= lpoly(bb[d-1][i],p_point[j].x[d-1]); 
            }
         }
      }	 


  for(j=1;j<=onedvpoints[E->mesh.nsd];j++)
    for(k=1;k<=onedvpoints[E->mesh.nsd];k++)   {
       E->M.vpt[GMVINDEX(j,k)] = 1.0;
       for(d=1;d<=E->mesh.nsd-1;d++)
          E->M.vpt[GMVINDEX(j,k)] *= lpoly(bb[d-1][j],s_point[k].x[d-1]);

       for(dd=1;dd<=E->mesh.nsd-1;dd++) {
          E->Mx.vpt[GMVXINDEX(dd-1,j,k)] = lpolydash(bb[dd-1][j],s_point[k].x[d-1]);
          for(d=1;d<=E->mesh.nsd-1;d++)
             if (d != dd)
                E->Mx.vpt[GMVXINDEX(dd-1,j,k)] *= lpoly(bb[d-1][j],s_point[k].x[d-1]);
          }
       }





  for(i=1;i<=enodes[E->mesh.nsd];i++)   {
      for(j=1;j<=vpoints[E->mesh.nsd];j++)   {
	  /* for each integration point  */
         E->NM.vpt[GNVINDEX(i,j)] = 1.0;
         for(d=1;d<=E->mesh.nsd;d++)   
             E->NM.vpt[GNVINDEX(i,j)] *=  
                   lpoly(bb[d-1][i],s_point[j].x[d-1]);

         for(dd=1;dd<=E->mesh.nsd;dd++)                 {
            E->NMx.vpt[GNVXINDEX(dd-1,i,j)] = lpolydash(bb[dd-1][i],s_point[j].x[dd-1]);
            for(d=1;d<=E->mesh.nsd;d++)
               if (d != dd)  
                  E->NMx.vpt[GNVXINDEX(dd-1,i,j)] *= lpoly(bb[d-1][i],s_point[j].x[d-1]); 
      
            }
         }

      }	 


  return; }

		
double lpoly(p,y)
     int p;	   /*   selects lagrange polynomial , 1d: node p */
     double y;  /*   coordinate in given direction to evaluate poly */
{	
  double value;
  
  switch (p)
    {
    case 1:
      value =0.5 * (1-y) ;
      break;
    case 2:
      value =0.5 * (1+y) ;
      break;
    default:
      value = 0.0;
    }

  return(value);
}
	
double lpolydash(p,y)
     int p;
     double y;
{	
  double value;
  switch (p)
    {
    case 1:
      value = -0.5 ;
      break;
    case 2:
      value =  0.5 ;
      break;
    default:
      value = 0.0;
    }

  return(value);	}










back to top