Revision de5604231ce4bc8db1bc1dcd27d8540cbedf1518 authored by Nick Piggin on 01 February 2010, 11:24:18 UTC, committed by Linus Torvalds on 02 February 2010, 20:50:47 UTC
RCU list walking of the per-cpu vmap cache was broken.  It did not use
RCU primitives, and also the union of free_list and rcu_head is
obviously wrong (because free_list is indeed the list we are RCU
walking).

While we are there, remove a couple of unused fields from an earlier
iteration.

These APIs aren't actually used anywhere, because of problems with the
XFS conversion.  Christoph has now verified that the problems are solved
with these patches.  Also it is an exported interface, so I think it
will be good to be merged now (and Christoph wants to get the XFS
changes into their local tree).

Cc: stable@kernel.org
Cc: linux-mm@kvack.org
Tested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
--
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 parent 489b24f
Raw File
mv_cesa.c
/*
 * Support for Marvell's crypto engine which can be found on some Orion5X
 * boards.
 *
 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
 * License: GPLv2
 *
 */
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>

#include "mv_cesa.h"
/*
 * STM:
 *   /---------------------------------------\
 *   |					     | request complete
 *  \./					     |
 * IDLE -> new request -> BUSY -> done -> DEQUEUE
 *                         /°\               |
 *			    |		     | more scatter entries
 *			    \________________/
 */
enum engine_status {
	ENGINE_IDLE,
	ENGINE_BUSY,
	ENGINE_W_DEQUEUE,
};

/**
 * struct req_progress - used for every crypt request
 * @src_sg_it:		sg iterator for src
 * @dst_sg_it:		sg iterator for dst
 * @sg_src_left:	bytes left in src to process (scatter list)
 * @src_start:		offset to add to src start position (scatter list)
 * @crypt_len:		length of current crypt process
 * @sg_dst_left:	bytes left dst to process in this scatter list
 * @dst_start:		offset to add to dst start position (scatter list)
 * @total_req_bytes:	total number of bytes processed (request).
 *
 * sg helper are used to iterate over the scatterlist. Since the size of the
 * SRAM may be less than the scatter size, this struct struct is used to keep
 * track of progress within current scatterlist.
 */
struct req_progress {
	struct sg_mapping_iter src_sg_it;
	struct sg_mapping_iter dst_sg_it;

	/* src mostly */
	int sg_src_left;
	int src_start;
	int crypt_len;
	/* dst mostly */
	int sg_dst_left;
	int dst_start;
	int total_req_bytes;
};

struct crypto_priv {
	void __iomem *reg;
	void __iomem *sram;
	int irq;
	struct task_struct *queue_th;

	/* the lock protects queue and eng_st */
	spinlock_t lock;
	struct crypto_queue queue;
	enum engine_status eng_st;
	struct ablkcipher_request *cur_req;
	struct req_progress p;
	int max_req_size;
	int sram_size;
};

static struct crypto_priv *cpg;

struct mv_ctx {
	u8 aes_enc_key[AES_KEY_LEN];
	u32 aes_dec_key[8];
	int key_len;
	u32 need_calc_aes_dkey;
};

enum crypto_op {
	COP_AES_ECB,
	COP_AES_CBC,
};

struct mv_req_ctx {
	enum crypto_op op;
	int decrypt;
};

static void compute_aes_dec_key(struct mv_ctx *ctx)
{
	struct crypto_aes_ctx gen_aes_key;
	int key_pos;

	if (!ctx->need_calc_aes_dkey)
		return;

	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);

	key_pos = ctx->key_len + 24;
	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
	switch (ctx->key_len) {
	case AES_KEYSIZE_256:
		key_pos -= 2;
		/* fall */
	case AES_KEYSIZE_192:
		key_pos -= 2;
		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
				4 * 4);
		break;
	}
	ctx->need_calc_aes_dkey = 0;
}

static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
		unsigned int len)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);

	switch (len) {
	case AES_KEYSIZE_128:
	case AES_KEYSIZE_192:
	case AES_KEYSIZE_256:
		break;
	default:
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	ctx->key_len = len;
	ctx->need_calc_aes_dkey = 1;

	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
	return 0;
}

static void setup_data_in(struct ablkcipher_request *req)
{
	int ret;
	void *buf;

	if (!cpg->p.sg_src_left) {
		ret = sg_miter_next(&cpg->p.src_sg_it);
		BUG_ON(!ret);
		cpg->p.sg_src_left = cpg->p.src_sg_it.length;
		cpg->p.src_start = 0;
	}

	cpg->p.crypt_len = min(cpg->p.sg_src_left, cpg->max_req_size);

	buf = cpg->p.src_sg_it.addr;
	buf += cpg->p.src_start;

	memcpy(cpg->sram + SRAM_DATA_IN_START, buf, cpg->p.crypt_len);

	cpg->p.sg_src_left -= cpg->p.crypt_len;
	cpg->p.src_start += cpg->p.crypt_len;
}

static void mv_process_current_q(int first_block)
{
	struct ablkcipher_request *req = cpg->cur_req;
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
	struct sec_accel_config op;

	switch (req_ctx->op) {
	case COP_AES_ECB:
		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
		break;
	case COP_AES_CBC:
		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
		if (first_block)
			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
		break;
	}
	if (req_ctx->decrypt) {
		op.config |= CFG_DIR_DEC;
		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
				AES_KEY_LEN);
	} else {
		op.config |= CFG_DIR_ENC;
		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
				AES_KEY_LEN);
	}

	switch (ctx->key_len) {
	case AES_KEYSIZE_128:
		op.config |= CFG_AES_LEN_128;
		break;
	case AES_KEYSIZE_192:
		op.config |= CFG_AES_LEN_192;
		break;
	case AES_KEYSIZE_256:
		op.config |= CFG_AES_LEN_256;
		break;
	}
	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
		ENC_P_DST(SRAM_DATA_OUT_START);
	op.enc_key_p = SRAM_DATA_KEY_P;

	setup_data_in(req);
	op.enc_len = cpg->p.crypt_len;
	memcpy(cpg->sram + SRAM_CONFIG, &op,
			sizeof(struct sec_accel_config));

	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
	/* GO */
	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);

	/*
	 * XXX: add timer if the interrupt does not occur for some mystery
	 * reason
	 */
}

static void mv_crypto_algo_completion(void)
{
	struct ablkcipher_request *req = cpg->cur_req;
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	if (req_ctx->op != COP_AES_CBC)
		return ;

	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
}

static void dequeue_complete_req(void)
{
	struct ablkcipher_request *req = cpg->cur_req;
	void *buf;
	int ret;

	cpg->p.total_req_bytes += cpg->p.crypt_len;
	do {
		int dst_copy;

		if (!cpg->p.sg_dst_left) {
			ret = sg_miter_next(&cpg->p.dst_sg_it);
			BUG_ON(!ret);
			cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
			cpg->p.dst_start = 0;
		}

		buf = cpg->p.dst_sg_it.addr;
		buf += cpg->p.dst_start;

		dst_copy = min(cpg->p.crypt_len, cpg->p.sg_dst_left);

		memcpy(buf, cpg->sram + SRAM_DATA_OUT_START, dst_copy);

		cpg->p.sg_dst_left -= dst_copy;
		cpg->p.crypt_len -= dst_copy;
		cpg->p.dst_start += dst_copy;
	} while (cpg->p.crypt_len > 0);

	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
	if (cpg->p.total_req_bytes < req->nbytes) {
		/* process next scatter list entry */
		cpg->eng_st = ENGINE_BUSY;
		mv_process_current_q(0);
	} else {
		sg_miter_stop(&cpg->p.src_sg_it);
		sg_miter_stop(&cpg->p.dst_sg_it);
		mv_crypto_algo_completion();
		cpg->eng_st = ENGINE_IDLE;
		req->base.complete(&req->base, 0);
	}
}

static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
{
	int i = 0;

	do {
		total_bytes -= sl[i].length;
		i++;

	} while (total_bytes > 0);

	return i;
}

static void mv_enqueue_new_req(struct ablkcipher_request *req)
{
	int num_sgs;

	cpg->cur_req = req;
	memset(&cpg->p, 0, sizeof(struct req_progress));

	num_sgs = count_sgs(req->src, req->nbytes);
	sg_miter_start(&cpg->p.src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);

	num_sgs = count_sgs(req->dst, req->nbytes);
	sg_miter_start(&cpg->p.dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
	mv_process_current_q(1);
}

static int queue_manag(void *data)
{
	cpg->eng_st = ENGINE_IDLE;
	do {
		struct ablkcipher_request *req;
		struct crypto_async_request *async_req = NULL;
		struct crypto_async_request *backlog;

		__set_current_state(TASK_INTERRUPTIBLE);

		if (cpg->eng_st == ENGINE_W_DEQUEUE)
			dequeue_complete_req();

		spin_lock_irq(&cpg->lock);
		if (cpg->eng_st == ENGINE_IDLE) {
			backlog = crypto_get_backlog(&cpg->queue);
			async_req = crypto_dequeue_request(&cpg->queue);
			if (async_req) {
				BUG_ON(cpg->eng_st != ENGINE_IDLE);
				cpg->eng_st = ENGINE_BUSY;
			}
		}
		spin_unlock_irq(&cpg->lock);

		if (backlog) {
			backlog->complete(backlog, -EINPROGRESS);
			backlog = NULL;
		}

		if (async_req) {
			req = container_of(async_req,
					struct ablkcipher_request, base);
			mv_enqueue_new_req(req);
			async_req = NULL;
		}

		schedule();

	} while (!kthread_should_stop());
	return 0;
}

static int mv_handle_req(struct ablkcipher_request *req)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&cpg->lock, flags);
	ret = ablkcipher_enqueue_request(&cpg->queue, req);
	spin_unlock_irqrestore(&cpg->lock, flags);
	wake_up_process(cpg->queue_th);
	return ret;
}

static int mv_enc_aes_ecb(struct ablkcipher_request *req)
{
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_ECB;
	req_ctx->decrypt = 0;

	return mv_handle_req(req);
}

static int mv_dec_aes_ecb(struct ablkcipher_request *req)
{
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_ECB;
	req_ctx->decrypt = 1;

	compute_aes_dec_key(ctx);
	return mv_handle_req(req);
}

static int mv_enc_aes_cbc(struct ablkcipher_request *req)
{
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_CBC;
	req_ctx->decrypt = 0;

	return mv_handle_req(req);
}

static int mv_dec_aes_cbc(struct ablkcipher_request *req)
{
	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);

	req_ctx->op = COP_AES_CBC;
	req_ctx->decrypt = 1;

	compute_aes_dec_key(ctx);
	return mv_handle_req(req);
}

static int mv_cra_init(struct crypto_tfm *tfm)
{
	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
	return 0;
}

irqreturn_t crypto_int(int irq, void *priv)
{
	u32 val;

	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
	if (!(val & SEC_INT_ACCEL0_DONE))
		return IRQ_NONE;

	val &= ~SEC_INT_ACCEL0_DONE;
	writel(val, cpg->reg + FPGA_INT_STATUS);
	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
	BUG_ON(cpg->eng_st != ENGINE_BUSY);
	cpg->eng_st = ENGINE_W_DEQUEUE;
	wake_up_process(cpg->queue_th);
	return IRQ_HANDLED;
}

struct crypto_alg mv_aes_alg_ecb = {
	.cra_name		= "ecb(aes)",
	.cra_driver_name	= "mv-ecb-aes",
	.cra_priority	= 300,
	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize	= 16,
	.cra_ctxsize	= sizeof(struct mv_ctx),
	.cra_alignmask	= 0,
	.cra_type	= &crypto_ablkcipher_type,
	.cra_module	= THIS_MODULE,
	.cra_init	= mv_cra_init,
	.cra_u		= {
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	mv_setkey_aes,
			.encrypt	=	mv_enc_aes_ecb,
			.decrypt	=	mv_dec_aes_ecb,
		},
	},
};

struct crypto_alg mv_aes_alg_cbc = {
	.cra_name		= "cbc(aes)",
	.cra_driver_name	= "mv-cbc-aes",
	.cra_priority	= 300,
	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
	.cra_blocksize	= AES_BLOCK_SIZE,
	.cra_ctxsize	= sizeof(struct mv_ctx),
	.cra_alignmask	= 0,
	.cra_type	= &crypto_ablkcipher_type,
	.cra_module	= THIS_MODULE,
	.cra_init	= mv_cra_init,
	.cra_u		= {
		.ablkcipher = {
			.ivsize		=	AES_BLOCK_SIZE,
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	mv_setkey_aes,
			.encrypt	=	mv_enc_aes_cbc,
			.decrypt	=	mv_dec_aes_cbc,
		},
	},
};

static int mv_probe(struct platform_device *pdev)
{
	struct crypto_priv *cp;
	struct resource *res;
	int irq;
	int ret;

	if (cpg) {
		printk(KERN_ERR "Second crypto dev?\n");
		return -EEXIST;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
	if (!res)
		return -ENXIO;

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp)
		return -ENOMEM;

	spin_lock_init(&cp->lock);
	crypto_init_queue(&cp->queue, 50);
	cp->reg = ioremap(res->start, res->end - res->start + 1);
	if (!cp->reg) {
		ret = -ENOMEM;
		goto err;
	}

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
	if (!res) {
		ret = -ENXIO;
		goto err_unmap_reg;
	}
	cp->sram_size = res->end - res->start + 1;
	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
	cp->sram = ioremap(res->start, cp->sram_size);
	if (!cp->sram) {
		ret = -ENOMEM;
		goto err_unmap_reg;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0 || irq == NO_IRQ) {
		ret = irq;
		goto err_unmap_sram;
	}
	cp->irq = irq;

	platform_set_drvdata(pdev, cp);
	cpg = cp;

	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
	if (IS_ERR(cp->queue_th)) {
		ret = PTR_ERR(cp->queue_th);
		goto err_thread;
	}

	ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
			cp);
	if (ret)
		goto err_unmap_sram;

	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);

	ret = crypto_register_alg(&mv_aes_alg_ecb);
	if (ret)
		goto err_reg;

	ret = crypto_register_alg(&mv_aes_alg_cbc);
	if (ret)
		goto err_unreg_ecb;
	return 0;
err_unreg_ecb:
	crypto_unregister_alg(&mv_aes_alg_ecb);
err_thread:
	free_irq(irq, cp);
err_reg:
	kthread_stop(cp->queue_th);
err_unmap_sram:
	iounmap(cp->sram);
err_unmap_reg:
	iounmap(cp->reg);
err:
	kfree(cp);
	cpg = NULL;
	platform_set_drvdata(pdev, NULL);
	return ret;
}

static int mv_remove(struct platform_device *pdev)
{
	struct crypto_priv *cp = platform_get_drvdata(pdev);

	crypto_unregister_alg(&mv_aes_alg_ecb);
	crypto_unregister_alg(&mv_aes_alg_cbc);
	kthread_stop(cp->queue_th);
	free_irq(cp->irq, cp);
	memset(cp->sram, 0, cp->sram_size);
	iounmap(cp->sram);
	iounmap(cp->reg);
	kfree(cp);
	cpg = NULL;
	return 0;
}

static struct platform_driver marvell_crypto = {
	.probe		= mv_probe,
	.remove		= mv_remove,
	.driver		= {
		.owner	= THIS_MODULE,
		.name	= "mv_crypto",
	},
};
MODULE_ALIAS("platform:mv_crypto");

static int __init mv_crypto_init(void)
{
	return platform_driver_register(&marvell_crypto);
}
module_init(mv_crypto_init);

static void __exit mv_crypto_exit(void)
{
	platform_driver_unregister(&marvell_crypto);
}
module_exit(mv_crypto_exit);

MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
MODULE_LICENSE("GPL");
back to top