Revision df38c1ce660628f05b4686eeaf0b548295ce7967 authored by Mike Kolupaev on 22 April 2019, 15:17:45 UTC, committed by Facebook Github Bot on 22 April 2019, 15:20:35 UTC
Summary:
Introduce BlockBasedTableOptions::index_shortening to give users control on which key shortening techniques to be used in building index blocks. Before this patch, both separators and successor keys where shortened in indexes. With this patch, the default is set to kShortenSeparators to only shorten the separators. Since each index block has many separators and only one successor (last key), the change should not have negative impact on index block size. However it should prevent many unnecessary block loads where due to approximation introduced by shorted successor, seek would land us to the previous block and then fix it by moving to the next one.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5174

Differential Revision: D14884185

Pulled By: al13n321

fbshipit-source-id: 1b08bc8c03edcf09b6b8c16e9a7eea08ad4dd534
1 parent de76909
Raw File
data_block_hash_index_test.cc
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).

#include <cstdlib>
#include <string>
#include <unordered_map>

#include "db/table_properties_collector.h"
#include "rocksdb/slice.h"
#include "table/block.h"
#include "table/block_based_table_reader.h"
#include "table/block_builder.h"
#include "table/data_block_hash_index.h"
#include "table/get_context.h"
#include "table/table_builder.h"
#include "util/testharness.h"
#include "util/testutil.h"

namespace rocksdb {

bool SearchForOffset(DataBlockHashIndex& index, const char* data,
                     uint16_t map_offset, const Slice& key,
                     uint8_t& restart_point) {
  uint8_t entry = index.Lookup(data, map_offset, key);
  if (entry == kCollision) {
    return true;
  }

  if (entry == kNoEntry) {
    return false;
  }

  return entry == restart_point;
}

// Random KV generator similer to block_test
static std::string RandomString(Random* rnd, int len) {
  std::string r;
  test::RandomString(rnd, len, &r);
  return r;
}
std::string GenerateKey(int primary_key, int secondary_key, int padding_size,
                        Random* rnd) {
  char buf[50];
  char* p = &buf[0];
  snprintf(buf, sizeof(buf), "%6d%4d", primary_key, secondary_key);
  std::string k(p);
  if (padding_size) {
    k += RandomString(rnd, padding_size);
  }

  return k;
}

// Generate random key value pairs.
// The generated key will be sorted. You can tune the parameters to generated
// different kinds of test key/value pairs for different scenario.
void GenerateRandomKVs(std::vector<std::string>* keys,
                       std::vector<std::string>* values, const int from,
                       const int len, const int step = 1,
                       const int padding_size = 0,
                       const int keys_share_prefix = 1) {
  Random rnd(302);

  // generate different prefix
  for (int i = from; i < from + len; i += step) {
    // generating keys that shares the prefix
    for (int j = 0; j < keys_share_prefix; ++j) {
      keys->emplace_back(GenerateKey(i, j, padding_size, &rnd));

      // 100 bytes values
      values->emplace_back(RandomString(&rnd, 100));
    }
  }
}

TEST(DataBlockHashIndex, DataBlockHashTestSmall) {
  DataBlockHashIndexBuilder builder;
  builder.Initialize(0.75 /*util_ratio*/);
  for (int j = 0; j < 5; j++) {
    for (uint8_t i = 0; i < 2 + j; i++) {
      std::string key("key" + std::to_string(i));
      uint8_t restart_point = i;
      builder.Add(key, restart_point);
    }

    size_t estimated_size = builder.EstimateSize();

    std::string buffer("fake"), buffer2;
    size_t original_size = buffer.size();
    estimated_size += original_size;
    builder.Finish(buffer);

    ASSERT_EQ(buffer.size(), estimated_size);

    buffer2 = buffer;  // test for the correctness of relative offset

    Slice s(buffer2);
    DataBlockHashIndex index;
    uint16_t map_offset;
    index.Initialize(s.data(), static_cast<uint16_t>(s.size()), &map_offset);

    // the additional hash map should start at the end of the buffer
    ASSERT_EQ(original_size, map_offset);
    for (uint8_t i = 0; i < 2; i++) {
      std::string key("key" + std::to_string(i));
      uint8_t restart_point = i;
      ASSERT_TRUE(
          SearchForOffset(index, s.data(), map_offset, key, restart_point));
    }
    builder.Reset();
  }
}

TEST(DataBlockHashIndex, DataBlockHashTest) {
  // bucket_num = 200, #keys = 100. 50% utilization
  DataBlockHashIndexBuilder builder;
  builder.Initialize(0.75 /*util_ratio*/);

  for (uint8_t i = 0; i < 100; i++) {
    std::string key("key" + std::to_string(i));
    uint8_t restart_point = i;
    builder.Add(key, restart_point);
  }

  size_t estimated_size = builder.EstimateSize();

  std::string buffer("fake content"), buffer2;
  size_t original_size = buffer.size();
  estimated_size += original_size;
  builder.Finish(buffer);

  ASSERT_EQ(buffer.size(), estimated_size);

  buffer2 = buffer; // test for the correctness of relative offset

  Slice s(buffer2);
  DataBlockHashIndex index;
  uint16_t map_offset;
  index.Initialize(s.data(), static_cast<uint16_t>(s.size()), &map_offset);

  // the additional hash map should start at the end of the buffer
  ASSERT_EQ(original_size, map_offset);
  for (uint8_t i = 0; i < 100; i++) {
    std::string key("key" + std::to_string(i));
    uint8_t restart_point = i;
    ASSERT_TRUE(
        SearchForOffset(index, s.data(), map_offset, key, restart_point));
  }
}

TEST(DataBlockHashIndex, DataBlockHashTestCollision) {
  // bucket_num = 2. There will be intense hash collisions
  DataBlockHashIndexBuilder builder;
  builder.Initialize(0.75 /*util_ratio*/);

  for (uint8_t i = 0; i < 100; i++) {
    std::string key("key" + std::to_string(i));
    uint8_t restart_point = i;
    builder.Add(key, restart_point);
  }

  size_t estimated_size = builder.EstimateSize();

  std::string buffer("some other fake content to take up space"), buffer2;
  size_t original_size = buffer.size();
  estimated_size += original_size;
  builder.Finish(buffer);

  ASSERT_EQ(buffer.size(), estimated_size);

  buffer2 = buffer; // test for the correctness of relative offset

  Slice s(buffer2);
  DataBlockHashIndex index;
  uint16_t map_offset;
  index.Initialize(s.data(), static_cast<uint16_t>(s.size()), &map_offset);

  // the additional hash map should start at the end of the buffer
  ASSERT_EQ(original_size, map_offset);
  for (uint8_t i = 0; i < 100; i++) {
    std::string key("key" + std::to_string(i));
    uint8_t restart_point = i;
    ASSERT_TRUE(
        SearchForOffset(index, s.data(), map_offset, key, restart_point));
  }
}

TEST(DataBlockHashIndex, DataBlockHashTestLarge) {
  DataBlockHashIndexBuilder builder;
  builder.Initialize(0.75 /*util_ratio*/);
  std::unordered_map<std::string, uint8_t> m;

  for (uint8_t i = 0; i < 100; i++) {
    if (i % 2) {
      continue;  // leave half of the keys out
    }
    std::string key = "key" + std::to_string(i);
    uint8_t restart_point = i;
    builder.Add(key, restart_point);
    m[key] = restart_point;
  }

  size_t estimated_size = builder.EstimateSize();

  std::string buffer("filling stuff"), buffer2;
  size_t original_size = buffer.size();
  estimated_size += original_size;
  builder.Finish(buffer);

  ASSERT_EQ(buffer.size(), estimated_size);

  buffer2 = buffer; // test for the correctness of relative offset

  Slice s(buffer2);
  DataBlockHashIndex index;
  uint16_t map_offset;
  index.Initialize(s.data(), static_cast<uint16_t>(s.size()), &map_offset);

  // the additional hash map should start at the end of the buffer
  ASSERT_EQ(original_size, map_offset);
  for (uint8_t i = 0; i < 100; i++) {
    std::string key = "key" + std::to_string(i);
    uint8_t restart_point = i;
    if (m.count(key)) {
      ASSERT_TRUE(m[key] == restart_point);
      ASSERT_TRUE(
          SearchForOffset(index, s.data(), map_offset, key, restart_point));
    } else {
      // we allow false positve, so don't test the nonexisting keys.
      // when false positive happens, the search will continue to the
      // restart intervals to see if the key really exist.
    }
  }
}

TEST(DataBlockHashIndex, RestartIndexExceedMax) {
  DataBlockHashIndexBuilder builder;
  builder.Initialize(0.75 /*util_ratio*/);
  std::unordered_map<std::string, uint8_t> m;

  for (uint8_t i = 0; i <= 253; i++) {
    std::string key = "key" + std::to_string(i);
    uint8_t restart_point = i;
    builder.Add(key, restart_point);
  }
  ASSERT_TRUE(builder.Valid());

  builder.Reset();

  for (uint8_t i = 0; i <= 254; i++) {
    std::string key = "key" + std::to_string(i);
    uint8_t restart_point = i;
    builder.Add(key, restart_point);
  }

  ASSERT_FALSE(builder.Valid());

  builder.Reset();
  ASSERT_TRUE(builder.Valid());
}

TEST(DataBlockHashIndex, BlockRestartIndexExceedMax) {
  Options options = Options();

  BlockBuilder builder(1 /* block_restart_interval */,
                       true /* use_delta_encoding */,
                       false /* use_value_delta_encoding */,
                       BlockBasedTableOptions::kDataBlockBinaryAndHash);

  // #restarts <= 253. HashIndex is valid
  for (int i = 0; i <= 253; i++) {
    std::string ukey = "key" + std::to_string(i);
    InternalKey ikey(ukey, 0, kTypeValue);
    builder.Add(ikey.Encode().ToString(), "value");
  }

  {
    // read serialized contents of the block
    Slice rawblock = builder.Finish();

    // create block reader
    BlockContents contents;
    contents.data = rawblock;
    Block reader(std::move(contents), kDisableGlobalSequenceNumber);

    ASSERT_EQ(reader.IndexType(),
              BlockBasedTableOptions::kDataBlockBinaryAndHash);
  }

  builder.Reset();

  // #restarts > 253. HashIndex is not used
  for (int i = 0; i <= 254; i++) {
    std::string ukey = "key" + std::to_string(i);
    InternalKey ikey(ukey, 0, kTypeValue);
    builder.Add(ikey.Encode().ToString(), "value");
  }

  {
    // read serialized contents of the block
    Slice rawblock = builder.Finish();

    // create block reader
    BlockContents contents;
    contents.data = rawblock;
    Block reader(std::move(contents), kDisableGlobalSequenceNumber);

    ASSERT_EQ(reader.IndexType(),
              BlockBasedTableOptions::kDataBlockBinarySearch);
  }
}

TEST(DataBlockHashIndex, BlockSizeExceedMax) {
  Options options = Options();
  std::string ukey(10, 'k');
  InternalKey ikey(ukey, 0, kTypeValue);

  BlockBuilder builder(1 /* block_restart_interval */,
                       false /* use_delta_encoding */,
                       false /* use_value_delta_encoding */,
                       BlockBasedTableOptions::kDataBlockBinaryAndHash);

  {
    // insert a large value. The block size plus HashIndex is 65536.
    std::string value(65502, 'v');

    builder.Add(ikey.Encode().ToString(), value);

    // read serialized contents of the block
    Slice rawblock = builder.Finish();
    ASSERT_LE(rawblock.size(), kMaxBlockSizeSupportedByHashIndex);
    std::cerr << "block size: " << rawblock.size() << std::endl;

    // create block reader
    BlockContents contents;
    contents.data = rawblock;
    Block reader(std::move(contents), kDisableGlobalSequenceNumber);

    ASSERT_EQ(reader.IndexType(),
              BlockBasedTableOptions::kDataBlockBinaryAndHash);
  }

  builder.Reset();

  {
    // insert a large value. The block size plus HashIndex would be 65537.
    // This excceed the max block size supported by HashIndex (65536).
    // So when build finishes HashIndex will not be created for the block.
    std::string value(65503, 'v');

    builder.Add(ikey.Encode().ToString(), value);

    // read serialized contents of the block
    Slice rawblock = builder.Finish();
    ASSERT_LE(rawblock.size(), kMaxBlockSizeSupportedByHashIndex);
    std::cerr << "block size: " << rawblock.size() << std::endl;

    // create block reader
    BlockContents contents;
    contents.data = rawblock;
    Block reader(std::move(contents), kDisableGlobalSequenceNumber);

    // the index type have fallen back to binary when build finish.
    ASSERT_EQ(reader.IndexType(),
              BlockBasedTableOptions::kDataBlockBinarySearch);
  }
}

TEST(DataBlockHashIndex, BlockTestSingleKey) {
  Options options = Options();

  BlockBuilder builder(16 /* block_restart_interval */,
                       true /* use_delta_encoding */,
                       false /* use_value_delta_encoding */,
                       BlockBasedTableOptions::kDataBlockBinaryAndHash);

  std::string ukey("gopher");
  std::string value("gold");
  InternalKey ikey(ukey, 10, kTypeValue);
  builder.Add(ikey.Encode().ToString(), value /*value*/);

  // read serialized contents of the block
  Slice rawblock = builder.Finish();

  // create block reader
  BlockContents contents;
  contents.data = rawblock;
  Block reader(std::move(contents), kDisableGlobalSequenceNumber);

  const InternalKeyComparator icmp(BytewiseComparator());
  auto iter = reader.NewIterator<DataBlockIter>(&icmp, icmp.user_comparator());
  bool may_exist;
  // search in block for the key just inserted
  {
    InternalKey seek_ikey(ukey, 10, kValueTypeForSeek);
    may_exist = iter->SeekForGet(seek_ikey.Encode().ToString());
    ASSERT_TRUE(may_exist);
    ASSERT_TRUE(iter->Valid());
    ASSERT_EQ(
        options.comparator->Compare(iter->key(), ikey.Encode().ToString()), 0);
    ASSERT_EQ(iter->value(), value);
  }

  // search in block for the existing ukey, but with higher seqno
  {
    InternalKey seek_ikey(ukey, 20, kValueTypeForSeek);

    // HashIndex should be able to set the iter correctly
    may_exist = iter->SeekForGet(seek_ikey.Encode().ToString());
    ASSERT_TRUE(may_exist);
    ASSERT_TRUE(iter->Valid());

    // user key should match
    ASSERT_EQ(options.comparator->Compare(ExtractUserKey(iter->key()), ukey),
              0);

    // seek_key seqno number should be greater than that of iter result
    ASSERT_GT(GetInternalKeySeqno(seek_ikey.Encode()),
              GetInternalKeySeqno(iter->key()));

    ASSERT_EQ(iter->value(), value);
  }

  // Search in block for the existing ukey, but with lower seqno
  // in this case, hash can find the only occurrence of the user_key, but
  // ParseNextDataKey() will skip it as it does not have a older seqno.
  // In this case, GetForSeek() is effective to locate the user_key, and
  // iter->Valid() == false indicates that we've reached to the end of
  // the block and the caller should continue searching the next block.
  {
    InternalKey seek_ikey(ukey, 5, kValueTypeForSeek);
    may_exist = iter->SeekForGet(seek_ikey.Encode().ToString());
    ASSERT_TRUE(may_exist);
    ASSERT_FALSE(iter->Valid());  // should have reached to the end of block
  }

  delete iter;
}

TEST(DataBlockHashIndex, BlockTestLarge) {
  Random rnd(1019);
  Options options = Options();
  std::vector<std::string> keys;
  std::vector<std::string> values;

  BlockBuilder builder(16 /* block_restart_interval */,
                       true /* use_delta_encoding */,
                       false /* use_value_delta_encoding */,
                       BlockBasedTableOptions::kDataBlockBinaryAndHash);
  int num_records = 500;

  GenerateRandomKVs(&keys, &values, 0, num_records);

  // Generate keys. Adding a trailing "1" to indicate existent keys.
  // Later will Seeking for keys with a trailing "0" to test seeking
  // non-existent keys.
  for (int i = 0; i < num_records; i++) {
    std::string ukey(keys[i] + "1" /* existing key marker */);
    InternalKey ikey(ukey, 0, kTypeValue);
    builder.Add(ikey.Encode().ToString(), values[i]);
  }

  // read serialized contents of the block
  Slice rawblock = builder.Finish();

  // create block reader
  BlockContents contents;
  contents.data = rawblock;
  Block reader(std::move(contents), kDisableGlobalSequenceNumber);
  const InternalKeyComparator icmp(BytewiseComparator());

  // random seek existent keys
  for (int i = 0; i < num_records; i++) {
    auto iter =
        reader.NewIterator<DataBlockIter>(&icmp, icmp.user_comparator());
    // find a random key in the lookaside array
    int index = rnd.Uniform(num_records);
    std::string ukey(keys[index] + "1" /* existing key marker */);
    InternalKey ikey(ukey, 0, kTypeValue);

    // search in block for this key
    bool may_exist = iter->SeekForGet(ikey.Encode().ToString());
    ASSERT_TRUE(may_exist);
    ASSERT_TRUE(iter->Valid());
    ASSERT_EQ(values[index], iter->value());

    delete iter;
  }

  // random seek non-existent user keys
  // In this case A), the user_key cannot be found in HashIndex. The key may
  // exist in the next block. So the iter is set invalidated to tell the
  // caller to search the next block. This test case belongs to this case A).
  //
  // Note that for non-existent keys, there is possibility of false positive,
  // i.e. the key is still hashed into some restart interval.
  // Two additional possible outcome:
  // B) linear seek the restart interval and not found, the iter stops at the
  //    starting of the next restart interval. The key does not exist
  //    anywhere.
  // C) linear seek the restart interval and not found, the iter stops at the
  //    the end of the block, i.e. restarts_. The key may exist in the next
  //    block.
  // So these combinations are possible when searching non-existent user_key:
  //
  // case#    may_exist  iter->Valid()
  //     A         true          false
  //     B        false           true
  //     C         true          false

  for (int i = 0; i < num_records; i++) {
    auto iter =
        reader.NewIterator<DataBlockIter>(&icmp, icmp.user_comparator());
    // find a random key in the lookaside array
    int index = rnd.Uniform(num_records);
    std::string ukey(keys[index] + "0" /* non-existing key marker */);
    InternalKey ikey(ukey, 0, kTypeValue);

    // search in block for this key
    bool may_exist = iter->SeekForGet(ikey.Encode().ToString());
    if (!may_exist) {
      ASSERT_TRUE(iter->Valid());
    }
    if (!iter->Valid()) {
      ASSERT_TRUE(may_exist);
    }

    delete iter;
  }
}

// helper routine for DataBlockHashIndex.BlockBoundary
void TestBoundary(InternalKey& ik1, std::string& v1, InternalKey& ik2,
                  std::string& v2, InternalKey& seek_ikey,
                  GetContext& get_context, Options& options) {
  std::unique_ptr<WritableFileWriter> file_writer;
  std::unique_ptr<RandomAccessFileReader> file_reader;
  std::unique_ptr<TableReader> table_reader;
  int level_ = -1;

  std::vector<std::string> keys;
  const ImmutableCFOptions ioptions(options);
  const MutableCFOptions moptions(options);
  const InternalKeyComparator internal_comparator(options.comparator);

  EnvOptions soptions;

  soptions.use_mmap_reads = ioptions.allow_mmap_reads;
  file_writer.reset(
      test::GetWritableFileWriter(new test::StringSink(), "" /* don't care */));
  std::unique_ptr<TableBuilder> builder;
  std::vector<std::unique_ptr<IntTblPropCollectorFactory>>
      int_tbl_prop_collector_factories;
  std::string column_family_name;
  builder.reset(ioptions.table_factory->NewTableBuilder(
      TableBuilderOptions(ioptions, moptions, internal_comparator,
                          &int_tbl_prop_collector_factories,
                          options.compression, options.sample_for_compression,
                          CompressionOptions(), false /* skip_filters */,
                          column_family_name, level_),
      TablePropertiesCollectorFactory::Context::kUnknownColumnFamily,
      file_writer.get()));

  builder->Add(ik1.Encode().ToString(), v1);
  builder->Add(ik2.Encode().ToString(), v2);
  EXPECT_TRUE(builder->status().ok());

  Status s = builder->Finish();
  file_writer->Flush();
  EXPECT_TRUE(s.ok()) << s.ToString();

  EXPECT_EQ(static_cast<test::StringSink*>(file_writer->writable_file())
                ->contents()
                .size(),
            builder->FileSize());

  // Open the table
  file_reader.reset(test::GetRandomAccessFileReader(new test::StringSource(
      static_cast<test::StringSink*>(file_writer->writable_file())->contents(),
      0 /*uniq_id*/, ioptions.allow_mmap_reads)));
  const bool kSkipFilters = true;
  const bool kImmortal = true;
  ioptions.table_factory->NewTableReader(
      TableReaderOptions(ioptions, moptions.prefix_extractor.get(), soptions,
                         internal_comparator, !kSkipFilters, !kImmortal,
                         level_),
      std::move(file_reader),
      static_cast<test::StringSink*>(file_writer->writable_file())
          ->contents()
          .size(),
      &table_reader);
  // Search using Get()
  ReadOptions ro;

  ASSERT_OK(table_reader->Get(ro, seek_ikey.Encode().ToString(), &get_context,
                              moptions.prefix_extractor.get()));
}

TEST(DataBlockHashIndex, BlockBoundary) {
  BlockBasedTableOptions table_options;
  table_options.data_block_index_type =
      BlockBasedTableOptions::kDataBlockBinaryAndHash;
  table_options.block_restart_interval = 1;
  table_options.block_size = 4096;

  Options options;
  options.comparator = BytewiseComparator();

  options.table_factory.reset(NewBlockBasedTableFactory(table_options));

  // insert two large k/v pair. Given that the block_size is 4096, one k/v
  // pair will take up one block.
  // [    k1/v1   ][    k2/v2  ]
  // [   Block N  ][ Block N+1 ]

  {
    // [ "aab"@100 ][ "axy"@10  ]
    // | Block  N  ][ Block N+1 ]
    // seek for "axy"@60
    std::string uk1("aab");
    InternalKey ik1(uk1, 100, kTypeValue);
    std::string v1(4100, '1');  // large value

    std::string uk2("axy");
    InternalKey ik2(uk2, 10, kTypeValue);
    std::string v2(4100, '2');  // large value

    PinnableSlice value;
    std::string seek_ukey("axy");
    InternalKey seek_ikey(seek_ukey, 60, kTypeValue);
    GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
                           GetContext::kNotFound, seek_ukey, &value, nullptr,
                           nullptr, nullptr, nullptr);

    TestBoundary(ik1, v1, ik2, v2, seek_ikey, get_context, options);
    ASSERT_EQ(get_context.State(), GetContext::kFound);
    ASSERT_EQ(value, v2);
    value.Reset();
  }

  {
    // [ "axy"@100 ][ "axy"@10  ]
    // | Block  N  ][ Block N+1 ]
    // seek for "axy"@60
    std::string uk1("axy");
    InternalKey ik1(uk1, 100, kTypeValue);
    std::string v1(4100, '1');  // large value

    std::string uk2("axy");
    InternalKey ik2(uk2, 10, kTypeValue);
    std::string v2(4100, '2');  // large value

    PinnableSlice value;
    std::string seek_ukey("axy");
    InternalKey seek_ikey(seek_ukey, 60, kTypeValue);
    GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
                           GetContext::kNotFound, seek_ukey, &value, nullptr,
                           nullptr, nullptr, nullptr);

    TestBoundary(ik1, v1, ik2, v2, seek_ikey, get_context, options);
    ASSERT_EQ(get_context.State(), GetContext::kFound);
    ASSERT_EQ(value, v2);
    value.Reset();
  }

  {
    // [ "axy"@100 ][ "axy"@10  ]
    // | Block  N  ][ Block N+1 ]
    // seek for "axy"@120
    std::string uk1("axy");
    InternalKey ik1(uk1, 100, kTypeValue);
    std::string v1(4100, '1');  // large value

    std::string uk2("axy");
    InternalKey ik2(uk2, 10, kTypeValue);
    std::string v2(4100, '2');  // large value

    PinnableSlice value;
    std::string seek_ukey("axy");
    InternalKey seek_ikey(seek_ukey, 120, kTypeValue);
    GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
                           GetContext::kNotFound, seek_ukey, &value, nullptr,
                           nullptr, nullptr, nullptr);

    TestBoundary(ik1, v1, ik2, v2, seek_ikey, get_context, options);
    ASSERT_EQ(get_context.State(), GetContext::kFound);
    ASSERT_EQ(value, v1);
    value.Reset();
  }

  {
    // [ "axy"@100 ][ "axy"@10  ]
    // | Block  N  ][ Block N+1 ]
    // seek for "axy"@5
    std::string uk1("axy");
    InternalKey ik1(uk1, 100, kTypeValue);
    std::string v1(4100, '1');  // large value

    std::string uk2("axy");
    InternalKey ik2(uk2, 10, kTypeValue);
    std::string v2(4100, '2');  // large value

    PinnableSlice value;
    std::string seek_ukey("axy");
    InternalKey seek_ikey(seek_ukey, 5, kTypeValue);
    GetContext get_context(options.comparator, nullptr, nullptr, nullptr,
                           GetContext::kNotFound, seek_ukey, &value, nullptr,
                           nullptr, nullptr, nullptr);

    TestBoundary(ik1, v1, ik2, v2, seek_ikey, get_context, options);
    ASSERT_EQ(get_context.State(), GetContext::kNotFound);
    value.Reset();
  }
}

}  // namespace rocksdb

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}
back to top