Revision e17b1af96b2afc38e684aa2f1033387e2ed10029 authored by Ard Biesheuvel on 12 April 2019, 21:34:18 UTC, committed by Russell King on 23 April 2019, 16:28:37 UTC
The EFI stub is entered with the caches and MMU enabled by the
firmware, and once the stub is ready to hand over to the decompressor,
we clean and disable the caches.

The cache clean routines use CP15 barrier instructions, which can be
disabled via SCTLR. Normally, when using the provided cache handling
routines to enable the caches and MMU, this bit is enabled as well.
However, but since we entered the stub with the caches already enabled,
this routine is not executed before we call the cache clean routines,
resulting in undefined instruction exceptions if the firmware never
enabled this bit.

So set the bit explicitly in the EFI entry code, but do so in a way that
guarantees that the resulting code can still run on v6 cores as well
(which are guaranteed to have CP15 barriers enabled)

Cc: <stable@vger.kernel.org> # v4.9+
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
1 parent c314396
Raw File
memfd.c
/*
 * memfd_create system call and file sealing support
 *
 * Code was originally included in shmem.c, and broken out to facilitate
 * use by hugetlbfs as well as tmpfs.
 *
 * This file is released under the GPL.
 */

#include <linux/fs.h>
#include <linux/vfs.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/khugepaged.h>
#include <linux/syscalls.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <linux/memfd.h>
#include <uapi/linux/memfd.h>

/*
 * We need a tag: a new tag would expand every xa_node by 8 bytes,
 * so reuse a tag which we firmly believe is never set or cleared on tmpfs
 * or hugetlbfs because they are memory only filesystems.
 */
#define MEMFD_TAG_PINNED        PAGECACHE_TAG_TOWRITE
#define LAST_SCAN               4       /* about 150ms max */

static void memfd_tag_pins(struct xa_state *xas)
{
	struct page *page;
	unsigned int tagged = 0;

	lru_add_drain();

	xas_lock_irq(xas);
	xas_for_each(xas, page, ULONG_MAX) {
		if (xa_is_value(page))
			continue;
		if (page_count(page) - page_mapcount(page) > 1)
			xas_set_mark(xas, MEMFD_TAG_PINNED);

		if (++tagged % XA_CHECK_SCHED)
			continue;

		xas_pause(xas);
		xas_unlock_irq(xas);
		cond_resched();
		xas_lock_irq(xas);
	}
	xas_unlock_irq(xas);
}

/*
 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
 * via get_user_pages(), drivers might have some pending I/O without any active
 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
 * and see whether it has an elevated ref-count. If so, we tag them and wait for
 * them to be dropped.
 * The caller must guarantee that no new user will acquire writable references
 * to those pages to avoid races.
 */
static int memfd_wait_for_pins(struct address_space *mapping)
{
	XA_STATE(xas, &mapping->i_pages, 0);
	struct page *page;
	int error, scan;

	memfd_tag_pins(&xas);

	error = 0;
	for (scan = 0; scan <= LAST_SCAN; scan++) {
		unsigned int tagged = 0;

		if (!xas_marked(&xas, MEMFD_TAG_PINNED))
			break;

		if (!scan)
			lru_add_drain_all();
		else if (schedule_timeout_killable((HZ << scan) / 200))
			scan = LAST_SCAN;

		xas_set(&xas, 0);
		xas_lock_irq(&xas);
		xas_for_each_marked(&xas, page, ULONG_MAX, MEMFD_TAG_PINNED) {
			bool clear = true;
			if (xa_is_value(page))
				continue;
			if (page_count(page) - page_mapcount(page) != 1) {
				/*
				 * On the last scan, we clean up all those tags
				 * we inserted; but make a note that we still
				 * found pages pinned.
				 */
				if (scan == LAST_SCAN)
					error = -EBUSY;
				else
					clear = false;
			}
			if (clear)
				xas_clear_mark(&xas, MEMFD_TAG_PINNED);
			if (++tagged % XA_CHECK_SCHED)
				continue;

			xas_pause(&xas);
			xas_unlock_irq(&xas);
			cond_resched();
			xas_lock_irq(&xas);
		}
		xas_unlock_irq(&xas);
	}

	return error;
}

static unsigned int *memfd_file_seals_ptr(struct file *file)
{
	if (shmem_file(file))
		return &SHMEM_I(file_inode(file))->seals;

#ifdef CONFIG_HUGETLBFS
	if (is_file_hugepages(file))
		return &HUGETLBFS_I(file_inode(file))->seals;
#endif

	return NULL;
}

#define F_ALL_SEALS (F_SEAL_SEAL | \
		     F_SEAL_SHRINK | \
		     F_SEAL_GROW | \
		     F_SEAL_WRITE | \
		     F_SEAL_FUTURE_WRITE)

static int memfd_add_seals(struct file *file, unsigned int seals)
{
	struct inode *inode = file_inode(file);
	unsigned int *file_seals;
	int error;

	/*
	 * SEALING
	 * Sealing allows multiple parties to share a tmpfs or hugetlbfs file
	 * but restrict access to a specific subset of file operations. Seals
	 * can only be added, but never removed. This way, mutually untrusted
	 * parties can share common memory regions with a well-defined policy.
	 * A malicious peer can thus never perform unwanted operations on a
	 * shared object.
	 *
	 * Seals are only supported on special tmpfs or hugetlbfs files and
	 * always affect the whole underlying inode. Once a seal is set, it
	 * may prevent some kinds of access to the file. Currently, the
	 * following seals are defined:
	 *   SEAL_SEAL: Prevent further seals from being set on this file
	 *   SEAL_SHRINK: Prevent the file from shrinking
	 *   SEAL_GROW: Prevent the file from growing
	 *   SEAL_WRITE: Prevent write access to the file
	 *
	 * As we don't require any trust relationship between two parties, we
	 * must prevent seals from being removed. Therefore, sealing a file
	 * only adds a given set of seals to the file, it never touches
	 * existing seals. Furthermore, the "setting seals"-operation can be
	 * sealed itself, which basically prevents any further seal from being
	 * added.
	 *
	 * Semantics of sealing are only defined on volatile files. Only
	 * anonymous tmpfs and hugetlbfs files support sealing. More
	 * importantly, seals are never written to disk. Therefore, there's
	 * no plan to support it on other file types.
	 */

	if (!(file->f_mode & FMODE_WRITE))
		return -EPERM;
	if (seals & ~(unsigned int)F_ALL_SEALS)
		return -EINVAL;

	inode_lock(inode);

	file_seals = memfd_file_seals_ptr(file);
	if (!file_seals) {
		error = -EINVAL;
		goto unlock;
	}

	if (*file_seals & F_SEAL_SEAL) {
		error = -EPERM;
		goto unlock;
	}

	if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
		error = mapping_deny_writable(file->f_mapping);
		if (error)
			goto unlock;

		error = memfd_wait_for_pins(file->f_mapping);
		if (error) {
			mapping_allow_writable(file->f_mapping);
			goto unlock;
		}
	}

	*file_seals |= seals;
	error = 0;

unlock:
	inode_unlock(inode);
	return error;
}

static int memfd_get_seals(struct file *file)
{
	unsigned int *seals = memfd_file_seals_ptr(file);

	return seals ? *seals : -EINVAL;
}

long memfd_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
	long error;

	switch (cmd) {
	case F_ADD_SEALS:
		/* disallow upper 32bit */
		if (arg > UINT_MAX)
			return -EINVAL;

		error = memfd_add_seals(file, arg);
		break;
	case F_GET_SEALS:
		error = memfd_get_seals(file);
		break;
	default:
		error = -EINVAL;
		break;
	}

	return error;
}

#define MFD_NAME_PREFIX "memfd:"
#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)

#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)

SYSCALL_DEFINE2(memfd_create,
		const char __user *, uname,
		unsigned int, flags)
{
	unsigned int *file_seals;
	struct file *file;
	int fd, error;
	char *name;
	long len;

	if (!(flags & MFD_HUGETLB)) {
		if (flags & ~(unsigned int)MFD_ALL_FLAGS)
			return -EINVAL;
	} else {
		/* Allow huge page size encoding in flags. */
		if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
				(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
			return -EINVAL;
	}

	/* length includes terminating zero */
	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
	if (len <= 0)
		return -EFAULT;
	if (len > MFD_NAME_MAX_LEN + 1)
		return -EINVAL;

	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
	if (!name)
		return -ENOMEM;

	strcpy(name, MFD_NAME_PREFIX);
	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
		error = -EFAULT;
		goto err_name;
	}

	/* terminating-zero may have changed after strnlen_user() returned */
	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
		error = -EFAULT;
		goto err_name;
	}

	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
	if (fd < 0) {
		error = fd;
		goto err_name;
	}

	if (flags & MFD_HUGETLB) {
		struct user_struct *user = NULL;

		file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
					HUGETLB_ANONHUGE_INODE,
					(flags >> MFD_HUGE_SHIFT) &
					MFD_HUGE_MASK);
	} else
		file = shmem_file_setup(name, 0, VM_NORESERVE);
	if (IS_ERR(file)) {
		error = PTR_ERR(file);
		goto err_fd;
	}
	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
	file->f_flags |= O_LARGEFILE;

	if (flags & MFD_ALLOW_SEALING) {
		file_seals = memfd_file_seals_ptr(file);
		*file_seals &= ~F_SEAL_SEAL;
	}

	fd_install(fd, file);
	kfree(name);
	return fd;

err_fd:
	put_unused_fd(fd);
err_name:
	kfree(name);
	return error;
}
back to top