sort by:
Revision Author Date Message Commit Date
e1cbbfa Btrfs: fix outstanding_extents accounting in DIO We are keeping track of how many extents we need to reserve properly based on the amount we want to write, but we were still incrementing outstanding_extents if we wrote less than what we requested. This isn't quite right since we will be limited to our max extent size. So instead lets do something horrible! Keep track of how many outstanding_extents we reserved, and decrement each time we allocate an extent. If we use our entire reserve make sure to jack up outstanding_extents on the inode so the accounting works out properly. Thanks, Reported-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <jbacik@fb.com> 17 March 2015, 20:36:35 UTC
6a3891c Btrfs: add sanity test for outstanding_extents accounting I introduced a regression wrt outstanding_extents accounting. These are tricky areas that aren't easily covered by xfstests as we could change MAX_EXTENT_SIZE at any time. So add sanity tests to cover the various conditions that are tricky in order to make sure we don't introduce regressions in the future. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> 17 March 2015, 20:36:31 UTC
bcb7e44 Btrfs: just free dummy extent buffers If we fail during our sanity tests we could get NULL deref's because we unload the module before the dummy extent buffers are free'd via RCU. So check for this case and just free the things directly. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> 17 March 2015, 20:30:18 UTC
ba11721 Btrfs: account merges/splits properly My fix Btrfs: fix merge delalloc logic only fixed half of the problems, it didn't fix the case where we have two large extents on either side and then join them together with a new small extent. We need to instead keep track of how many extents we have accounted for with each side of the new extent, and then see how many extents we need for the new large extent. If they match then we know we need to keep our reservation, otherwise we need to drop our reservation. This shows up with a case like this [BTRFS_MAX_EXTENT_SIZE+4K][4K HOLE][BTRFS_MAX_EXTENT_SIZE+4K] Previously the logic would have said that the number extents required for the new size (3) is larger than the number of extents required for the largest side (2) therefore we need to keep our reservation. But this isn't the case, since both sides require a reservation of 2 which leads to 4 for the whole range currently reserved, but we only need 3, so we need to drop one of the reservations. The same problem existed for splits, we'd think we only need 3 extents when creating the hole but in reality we need 4. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> 17 March 2015, 20:28:21 UTC
dcdf7f6 Btrfs: prepare block group cache before writing Writing the block group cache will modify the extent tree quite a bit because it truncates the old space cache and pre-allocates new stuff. To try and cut down on the churn lets do the setup dance first, then later on hopefully we can avoid looping with newly dirtied roots. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> 17 March 2015, 14:56:55 UTC
ea526d1 Btrfs: fix ASSERT(list_empty(&cur_trans->dirty_bgs_list) Dave could hit this assert consistently running btrfs/078. This is because when we update the block groups we could truncate the free space, which would try to delete the csums for that range and dirty the csum root. For this to happen we have to have already written out the csum root so it's kind of hard to hit this case. This patch fixes this by changing the logic to only write the dirty block groups if the dirty_cowonly_roots list is empty. This will get us the same effect as before since we add the extent root last, and will cover the case that we dirty some other root again but not the extent root. Thanks, Reported-by: David Sterba <dsterba@suse.cz> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 13 March 2015, 20:47:04 UTC
6a41dd0 Btrfs: account for the correct number of extents for delalloc reservations Direct IO can easily pass in an buffer that is greater than BTRFS_MAX_EXTENT_SIZE, so take this into account when reserving extents in the delalloc reservation code. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 13 March 2015, 20:46:59 UTC
8461a3d Btrfs: fix merge delalloc logic My patch to properly count outstanding extents wrt MAX_EXTENT_SIZE introduced a regression when re-dirtying already dirty areas. We have logic in split to make sure we are taking the largest space into account but didn't have it for merge, so it was sometimes making us think we were turning a tiny extent into a huge extent, when in reality we already had a huge extent and needed to use the other side in our logic. This fixes the regression that was reported by a user on list. Thanks, Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 13 March 2015, 20:46:59 UTC
48da5f0 Btrfs: fix comp_oper to get right order Case (oper1->seq > oper2->seq) should differ with case (oper1->seq < oper2->seq). Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.cz> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 13 March 2015, 20:46:59 UTC
b4924a0 Btrfs: catch transaction abortion after waiting for it This problem is uncovered by a test case: http://patchwork.ozlabs.org/patch/244297. Fsync() can report success when it actually doesn't. When we have several threads running fsync() at the same tiem and in one fsync() we get a transaction abortion due to some problems(in the test case it's disk failures), and other fsync()s may return successfully which makes userspace programs think that data is now safely flushed into disk. It's because that after fsyncs() fail btrfs_sync_log() due to disk failures, they get to try btrfs_commit_transaction() where it finds that there is already a transaction being committed, and they'll just call wait_for_commit() and return. Note that we actually check "trans->aborted" in btrfs_end_transaction, but it's likely that the error message is still not yet throwed out and only after wait_for_commit() we're sure whether the transaction is committed successfully. This add the necessary check and it now passes the test. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com> 13 March 2015, 20:38:23 UTC
d220712 btrfs: fix sizeof format specifier in btrfs_check_super_valid() This patch fixes mips compilation warning: fs/btrfs/disk-io.c: In function 'btrfs_check_super_valid': fs/btrfs/disk-io.c:3927:21: warning: format '%lu' expects argument of type 'long unsigned int', but argument 3 has type 'unsigned int' [-Wformat] Signed-off-by: Fabian Frederick <fabf@skynet.be> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Chris Mason <clm@fb.com> 13 March 2015, 20:38:22 UTC
dd9ef13 Btrfs:__add_inode_ref: out of bounds memory read when looking for extended ref. Improper arithmetics when calculting the address of the extended ref could lead to an out of bounds memory read and kernel panic. Signed-off-by: Quentin Casasnovas <quentin.casasnovas@oracle.com> Reviewed-by: David Sterba <dsterba@suse.cz> cc: stable@vger.kernel.org # v3.7+ Signed-off-by: Chris Mason <clm@fb.com> 06 March 2015, 01:28:33 UTC
3a8b36f Btrfs: fix data loss in the fast fsync path When using the fast file fsync code path we can miss the fact that new writes happened since the last file fsync and therefore return without waiting for the IO to finish and write the new extents to the fsync log. Here's an example scenario where the fsync will miss the fact that new file data exists that wasn't yet durably persisted: 1. fs_info->last_trans_committed == N - 1 and current transaction is transaction N (fs_info->generation == N); 2. do a buffered write; 3. fsync our inode, this clears our inode's full sync flag, starts an ordered extent and waits for it to complete - when it completes at btrfs_finish_ordered_io(), the inode's last_trans is set to the value N (via btrfs_update_inode_fallback -> btrfs_update_inode -> btrfs_set_inode_last_trans); 4. transaction N is committed, so fs_info->last_trans_committed is now set to the value N and fs_info->generation remains with the value N; 5. do another buffered write, when this happens btrfs_file_write_iter sets our inode's last_trans to the value N + 1 (that is fs_info->generation + 1 == N + 1); 6. transaction N + 1 is started and fs_info->generation now has the value N + 1; 7. transaction N + 1 is committed, so fs_info->last_trans_committed is set to the value N + 1; 8. fsync our inode - because it doesn't have the full sync flag set, we only start the ordered extent, we don't wait for it to complete (only in a later phase) therefore its last_trans field has the value N + 1 set previously by btrfs_file_write_iter(), and so we have: inode->last_trans <= fs_info->last_trans_committed (N + 1) (N + 1) Which made us not log the last buffered write and exit the fsync handler immediately, returning success (0) to user space and resulting in data loss after a crash. This can actually be triggered deterministically and the following excerpt from a testcase I made for xfstests triggers the issue. It moves a dummy file across directories and then fsyncs the old parent directory - this is just to trigger a transaction commit, so moving files around isn't directly related to the issue but it was chosen because running 'sync' for example does more than just committing the current transaction, as it flushes/waits for all file data to be persisted. The issue can also happen at random periods, since the transaction kthread periodicaly commits the current transaction (about every 30 seconds by default). The body of the test is: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our main test file 'foo', the one we check for data loss. # By doing an fsync against our file, it makes btrfs clear the 'needs_full_sync' # bit from its flags (btrfs inode specific flags). $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 8K" \ -c "fsync" $SCRATCH_MNT/foo | _filter_xfs_io # Now create one other file and 2 directories. We will move this second file # from one directory to the other later because it forces btrfs to commit its # currently open transaction if we fsync the old parent directory. This is # necessary to trigger the data loss bug that affected btrfs. mkdir $SCRATCH_MNT/testdir_1 touch $SCRATCH_MNT/testdir_1/bar mkdir $SCRATCH_MNT/testdir_2 # Make sure everything is durably persisted. sync # Write more 8Kb of data to our file. $XFS_IO_PROG -c "pwrite -S 0xbb 8K 8K" $SCRATCH_MNT/foo | _filter_xfs_io # Move our 'bar' file into a new directory. mv $SCRATCH_MNT/testdir_1/bar $SCRATCH_MNT/testdir_2/bar # Fsync our first directory. Because it had a file moved into some other # directory, this made btrfs commit the currently open transaction. This is # a condition necessary to trigger the data loss bug. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/testdir_1 # Now fsync our main test file. If the fsync succeeds, we expect the 8Kb of # data we wrote previously to be persisted and available if a crash happens. # This did not happen with btrfs, because of the transaction commit that # happened when we fsynced the parent directory. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Now check that all data we wrote before are available. echo "File content after log replay:" od -t x1 $SCRATCH_MNT/foo status=0 exit The expected golden output for the test, which is what we get with this fix applied (or when running against ext3/4 and xfs), is: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 8192/8192 bytes at offset 8192 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb * 0040000 Without this fix applied, the output shows the test file does not have the second 8Kb extent that we successfully fsynced: wrote 8192/8192 bytes at offset 0 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) wrote 8192/8192 bytes at offset 8192 XXX Bytes, X ops; XX:XX:XX.X (XXX YYY/sec and XXX ops/sec) File content after log replay: 0000000 aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa aa * 0020000 So fix this by skipping the fsync only if we're doing a full sync and if the inode's last_trans is <= fs_info->last_trans_committed, or if the inode is already in the log. Also remove setting the inode's last_trans in btrfs_file_write_iter since it's useless/unreliable. Also because btrfs_file_write_iter no longer sets inode->last_trans to fs_info->generation + 1, don't set last_trans to 0 if we bail out and don't bail out if last_trans is 0, otherwise something as simple as the following example wouldn't log the second write on the last fsync: 1. write to file 2. fsync file 3. fsync file |--> btrfs_inode_in_log() returns true and it set last_trans to 0 4. write to file |--> btrfs_file_write_iter() no longers sets last_trans, so it remained with a value of 0 5. fsync |--> inode->last_trans == 0, so it bails out without logging the second write A test case for xfstests will be sent soon. CC: <stable@vger.kernel.org> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 06 March 2015, 01:28:32 UTC
f5c0a12 Btrfs: remove extra run_delayed_refs in update_cowonly_root This got added with my dirty_bgs patch, it's not needed. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 06 March 2015, 01:28:30 UTC
84471e2 Btrfs: incremental send, don't rename a directory too soon There's one more case where we can't issue a rename operation for a directory as soon as we process it. We used to delay directory renames only if they have some ancestor directory with a higher inode number that got renamed too, but there's another case where we need to delay the rename too - when a directory A is renamed to the old name of a directory B but that directory B has its rename delayed because it has now (in the send root) an ancestor with a higher inode number that was renamed. If we don't delay the directory rename in this case, the receiving end of the send stream will attempt to rename A to the old name of B before B got renamed to its new name, which results in a "directory not empty" error. So fix this by delaying directory renames for this case too. Steps to reproduce: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ mkdir /mnt/a $ mkdir /mnt/b $ mkdir /mnt/c $ touch /mnt/a/file $ btrfs subvolume snapshot -r /mnt /mnt/snap1 $ mv /mnt/c /mnt/x $ mv /mnt/a /mnt/x/y $ mv /mnt/b /mnt/a $ btrfs subvolume snapshot -r /mnt /mnt/snap2 $ btrfs send /mnt/snap1 -f /tmp/1.send $ btrfs send -p /mnt/snap1 /mnt/snap2 -f /tmp/2.send $ mkfs.btrfs -f /dev/sdc $ mount /dev/sdc /mnt2 $ btrfs receive /mnt2 -f /tmp/1.send $ btrfs receive /mnt2 -f /tmp/2.send ERROR: rename b -> a failed. Directory not empty A test case for xfstests follows soon. Reported-by: Ames Cornish <ames@cornishes.net> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:45 UTC
1932b7b btrfs: fix lost return value due to variable shadowing A block-local variable stores error code but btrfs_get_blocks_direct may not return it in the end as there's a ret defined in the function scope. CC: <stable@vger.kernel.org> # 3.6+ Fixes: d187663ef24c ("Btrfs: lock extents as we map them in DIO") Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:45 UTC
5cdf83e Btrfs: do not ignore errors from btrfs_lookup_xattr in do_setxattr The return value from btrfs_lookup_xattr() can be a pointer encoding an error, therefore deal with it. This fixes commit 5f5bc6b1e2d5 ("Btrfs: make xattr replace operations atomic"). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:45 UTC
5dfe2be Btrfs: fix off-by-one logic error in btrfs_realloc_node The end_slot variable actually matches the number of pointers in the node and not the last slot (which is 'nritems - 1'). Therefore in order to check that the current slot in the for loop doesn't match the last one, the correct logic is to check if 'i' is less than 'end_slot - 1' and not 'end_slot - 2'. Fix this and set end_slot to be 'nritems - 1', as it's less confusing since the variable name implies it's inclusive rather then exclusive. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:45 UTC
e8c1c76 Btrfs: add missing inode update when punching hole When punching a file hole if we endup only zeroing parts of a page, because the start offset isn't a multiple of the sector size or the start offset and length fall within the same page, we were not updating the inode item. This prevented an fsync from doing anything, if no other file changes happened in the current transaction, because the fields in btrfs_inode used to check if the inode needs to be fsync'ed weren't updated. This issue is easy to reproduce and the following excerpt from the xfstest case I made shows how to trigger it: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our test file. $XFS_IO_PROG -f -c "pwrite -S 0x22 -b 16K 0 16K" \ $SCRATCH_MNT/foo | _filter_xfs_io # Fsync the file, this makes btrfs update some btrfs inode specific fields # that are used to track if the inode needs to be written/updated to the fsync # log or not. After this fsync, the new values for those fields indicate that # a subsequent fsync does not need to touch the fsync log. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Force a commit of the current transaction. After this point, any operation # that modifies the data or metadata of our file, should update those fields in # the btrfs inode with values that make the next fsync operation write to the # fsync log. sync # Punch a hole in our file. This small range affects only 1 page. # This made the btrfs hole punching implementation write only some zeroes in # one page, but it did not update the btrfs inode fields used to determine if # the next fsync needs to write to the fsync log. $XFS_IO_PROG -c "fpunch 8000 4K" $SCRATCH_MNT/foo # Another variation of the previously mentioned case. $XFS_IO_PROG -c "fpunch 15000 100" $SCRATCH_MNT/foo # Now fsync the file. This was a no-operation because the previous hole punch # operation didn't update the inode's fields mentioned before, so they remained # with the values they had after the first fsync - that is, they indicate that # it is not needed to write to fsync log. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo echo "File content before:" od -t x1 $SCRATCH_MNT/foo # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey # Enable writes and mount the fs. This makes the fsync log replay code run. _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Because the last fsync didn't do anything, here the file content matched what # it was after the first fsync, before the holes were punched, and not what it # was after the holes were punched. echo "File content after:" od -t x1 $SCRATCH_MNT/foo This issue has been around since 2012, when the punch hole implementation was added, commit 2aaa66558172 ("Btrfs: add hole punching"). A test case for xfstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:44 UTC
0c0ef4b Btrfs: abort the transaction if we fail to update the free space cache inode Our gluster boxes were hitting a problem where they'd run out of space when updating the block group cache and therefore wouldn't be able to update the free space inode. This is a problem because this is how we invalidate the cache and protect ourselves from errors further down the stack, so if this fails we have to abort the transaction so we make sure we don't end up with stale free space cache. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:44 UTC
4d884fc Btrfs: fix fsync race leading to ordered extent memory leaks We can have multiple fsync operations against the same file during the same transaction and they can collect the same ordered extents while they don't complete (still accessible from the inode's ordered tree). If this happens, those ordered extents will never get their reference counts decremented to 0, leading to memory leaks and inode leaks (an iput for an ordered extent's inode is scheduled only when the ordered extent's refcount drops to 0). The following sequence diagram explains this race: CPU 1 CPU 2 btrfs_sync_file() btrfs_sync_file() mutex_lock(inode->i_mutex) btrfs_log_inode() btrfs_get_logged_extents() --> collects ordered extent X --> increments ordered extent X's refcount btrfs_submit_logged_extents() mutex_unlock(inode->i_mutex) mutex_lock(inode->i_mutex) btrfs_sync_log() btrfs_wait_logged_extents() --> list_del_init(&ordered->log_list) btrfs_log_inode() btrfs_get_logged_extents() --> Adds ordered extent X to logged_list because at this point: list_empty(&ordered->log_list) && test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags) == 0 --> Increments ordered extent X's refcount --> check if ordered extent's io is finished or not, start it if necessary and wait for it to finish --> sets bit BTRFS_ORDERED_LOGGED on ordered extent X's flags and adds it to trans->ordered btrfs_sync_log() finishes btrfs_submit_logged_extents() btrfs_log_inode() finishes mutex_unlock(inode->i_mutex) btrfs_sync_file() finishes btrfs_sync_log() btrfs_wait_logged_extents() --> Sees ordered extent X has the bit BTRFS_ORDERED_LOGGED set in its flags --> X's refcount is untouched btrfs_sync_log() finishes btrfs_sync_file() finishes btrfs_commit_transaction() --> called by transaction kthread for e.g. btrfs_wait_pending_ordered() --> waits for ordered extent X to complete --> decrements ordered extent X's refcount by 1 only, corresponding to the increment done by the fsync task ran by CPU 1 In the scenario of the above diagram, after the transaction commit, the ordered extent will remain with a refcount of 1 forever, leaking the ordered extent structure and preventing the i_count of its inode from ever decreasing to 0, since the delayed iput is scheduled only when the ordered extent's refcount drops to 0, preventing the inode from ever being evicted by the VFS. Fix this by using the flag BTRFS_ORDERED_LOGGED differently. Use it to mean that an ordered extent is already being processed by an fsync call, which will attach it to the current transaction, preventing it from being collected by subsequent fsync operations against the same inode. This race was introduced with the following change (added in 3.19 and backported to stable 3.18 and 3.17): Btrfs: make sure logged extents complete in the current transaction V3 commit 50d9aa99bd35c77200e0e3dd7a72274f8304701f I ran into this issue while running xfstests/generic/113 in a loop, which failed about 1 out of 10 runs with the following warning in dmesg: [ 2612.440038] WARNING: CPU: 4 PID: 22057 at fs/btrfs/disk-io.c:3558 free_fs_root+0x36/0x133 [btrfs]() [ 2612.442810] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop processor parport_pc parport psmouse therma l_sys i2c_piix4 serio_raw pcspkr evdev microcode button i2c_core ext4 crc16 jbd2 mbcache sd_mod sg sr_mod cdrom virtio_scsi ata_generic virtio_pci ata_piix virtio_ring libata virtio flo ppy e1000 scsi_mod [last unloaded: btrfs] [ 2612.452711] CPU: 4 PID: 22057 Comm: umount Tainted: G W 3.19.0-rc5-btrfs-next-4+ #1 [ 2612.454921] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [ 2612.457709] 0000000000000009 ffff8801342c3c78 ffffffff8142425e ffff88023ec8f2d8 [ 2612.459829] 0000000000000000 ffff8801342c3cb8 ffffffff81045308 ffff880046460000 [ 2612.461564] ffffffffa036da56 ffff88003d07b000 ffff880046460000 ffff880046460068 [ 2612.463163] Call Trace: [ 2612.463719] [<ffffffff8142425e>] dump_stack+0x4c/0x65 [ 2612.464789] [<ffffffff81045308>] warn_slowpath_common+0xa1/0xbb [ 2612.466026] [<ffffffffa036da56>] ? free_fs_root+0x36/0x133 [btrfs] [ 2612.467247] [<ffffffff810453c5>] warn_slowpath_null+0x1a/0x1c [ 2612.468416] [<ffffffffa036da56>] free_fs_root+0x36/0x133 [btrfs] [ 2612.469625] [<ffffffffa036f2a7>] btrfs_drop_and_free_fs_root+0x93/0x9b [btrfs] [ 2612.471251] [<ffffffffa036f353>] btrfs_free_fs_roots+0xa4/0xd6 [btrfs] [ 2612.472536] [<ffffffff8142612e>] ? wait_for_completion+0x24/0x26 [ 2612.473742] [<ffffffffa0370bbc>] close_ctree+0x1f3/0x33c [btrfs] [ 2612.475477] [<ffffffff81059d1d>] ? destroy_workqueue+0x148/0x1ba [ 2612.476695] [<ffffffffa034e3da>] btrfs_put_super+0x19/0x1b [btrfs] [ 2612.477911] [<ffffffff81153e53>] generic_shutdown_super+0x73/0xef [ 2612.479106] [<ffffffff811540e2>] kill_anon_super+0x13/0x1e [ 2612.480226] [<ffffffffa034e1e3>] btrfs_kill_super+0x17/0x23 [btrfs] [ 2612.481471] [<ffffffff81154307>] deactivate_locked_super+0x3b/0x50 [ 2612.482686] [<ffffffff811547a7>] deactivate_super+0x3f/0x43 [ 2612.483791] [<ffffffff8116b3ed>] cleanup_mnt+0x59/0x78 [ 2612.484842] [<ffffffff8116b44c>] __cleanup_mnt+0x12/0x14 [ 2612.485900] [<ffffffff8105d019>] task_work_run+0x8f/0xbc [ 2612.486960] [<ffffffff810028d8>] do_notify_resume+0x5a/0x6b [ 2612.488083] [<ffffffff81236e5b>] ? trace_hardirqs_on_thunk+0x3a/0x3f [ 2612.489333] [<ffffffff8142a17f>] int_signal+0x12/0x17 [ 2612.490353] ---[ end trace 54a960a6bdcb8d93 ]--- [ 2612.557253] VFS: Busy inodes after unmount of sdb. Self-destruct in 5 seconds. Have a nice day... Kmemleak confirmed the ordered extent leak (and btrfs inode specific structures such as delayed nodes): $ cat /sys/kernel/debug/kmemleak unreferenced object 0xffff880154290db0 (size 576): comm "btrfsck", pid 21980, jiffies 4295542503 (age 1273.412s) hex dump (first 32 bytes): 01 40 00 00 01 00 00 00 b0 1d f1 4e 01 88 ff ff .@.........N.... 00 00 00 00 00 00 00 00 c8 0d 29 54 01 88 ff ff ..........)T.... backtrace: [<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a [<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83 [<ffffffff8122fb26>] __radix_tree_create+0x109/0x190 [<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac [<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs] [<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs] [<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs] [<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs] [<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs] [<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed [<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa [<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b [<ffffffff81429e92>] system_call_fastpath+0x12/0x17 [<ffffffffffffffff>] 0xffffffffffffffff unreferenced object 0xffff88014ef11db0 (size 576): comm "rm", pid 22009, jiffies 4295542593 (age 1273.052s) hex dump (first 32 bytes): 02 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 c8 1d f1 4e 01 88 ff ff ...........N.... backtrace: [<ffffffff8141d74d>] kmemleak_update_trace+0x4c/0x6a [<ffffffff8122f2c0>] radix_tree_node_alloc+0x6d/0x83 [<ffffffff8122fb26>] __radix_tree_create+0x109/0x190 [<ffffffff8122fbdd>] radix_tree_insert+0x30/0xac [<ffffffffa03b9bde>] btrfs_get_or_create_delayed_node+0x130/0x187 [btrfs] [<ffffffffa03bb82d>] btrfs_delayed_delete_inode_ref+0x32/0xac [btrfs] [<ffffffffa0379dae>] __btrfs_unlink_inode+0xee/0x288 [btrfs] [<ffffffffa037c715>] btrfs_unlink_inode+0x1e/0x40 [btrfs] [<ffffffffa037c797>] btrfs_unlink+0x60/0x9b [btrfs] [<ffffffff8115d7f0>] vfs_unlink+0x9c/0xed [<ffffffff8115f5de>] do_unlinkat+0x12c/0x1fa [<ffffffff811601a7>] SyS_unlinkat+0x29/0x2b [<ffffffff81429e92>] system_call_fastpath+0x12/0x17 [<ffffffffffffffff>] 0xffffffffffffffff unreferenced object 0xffff8800336feda8 (size 584): comm "aio-stress", pid 22031, jiffies 4295543006 (age 1271.400s) hex dump (first 32 bytes): 00 40 3e 00 00 00 00 00 00 00 8f 42 00 00 00 00 .@>........B.... 00 00 01 00 00 00 00 00 00 00 01 00 00 00 00 00 ................ backtrace: [<ffffffff8114eb34>] create_object+0x172/0x29a [<ffffffff8141d790>] kmemleak_alloc+0x25/0x41 [<ffffffff81141ae6>] kmemleak_alloc_recursive.constprop.52+0x16/0x18 [<ffffffff81145288>] kmem_cache_alloc+0xf7/0x198 [<ffffffffa0389243>] __btrfs_add_ordered_extent+0x43/0x309 [btrfs] [<ffffffffa038968b>] btrfs_add_ordered_extent_dio+0x12/0x14 [btrfs] [<ffffffffa03810e2>] btrfs_get_blocks_direct+0x3ef/0x571 [btrfs] [<ffffffff81181349>] do_blockdev_direct_IO+0x62a/0xb47 [<ffffffff8118189a>] __blockdev_direct_IO+0x34/0x36 [<ffffffffa03776e5>] btrfs_direct_IO+0x16a/0x1e8 [btrfs] [<ffffffff81100373>] generic_file_direct_write+0xb8/0x12d [<ffffffffa038615c>] btrfs_file_write_iter+0x24b/0x42f [btrfs] [<ffffffff8118bb0d>] aio_run_iocb+0x2b7/0x32e [<ffffffff8118c99a>] do_io_submit+0x26e/0x2ff [<ffffffff8118ca3b>] SyS_io_submit+0x10/0x12 [<ffffffff81429e92>] system_call_fastpath+0x12/0x17 CC: <stable@vger.kernel.org> # 3.19, 3.18 and 3.17 Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 02 March 2015, 22:04:44 UTC
e57cf21 Btrfs: fix allocation size calculations in alloc_btrfs_bio Since commit 8e5cfb55d3f (Btrfs: Make raid_map array be inlined in btrfs_bio structure), the raid map array is allocated along with the btrfs bio in alloc_btrfs_bio. The calculation used to decide how much we need to allocate was using the wrong parameter passed into the allocation function. The passed in real_stripes will be zero if a target replace operation is not currently running. We want to use total_stripes instead. Signed-off-by: Chris Mason <clm@fb.com> Reported-by: David Sterba <dsterba@suse.cz> Tested-by: David Sterba <dsterba@suse.cz> 20 February 2015, 14:55:15 UTC
a742994 Btrfs: don't remove extents and xattrs when logging new names If we are recording in the tree log that an inode has new names (new hard links were added), we would drop items, belonging to the inode, that we shouldn't: 1) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime flags, we ended up dropping all the extent and xattr items that were previously logged. This was done only in memory, since logging a new name doesn't imply syncing the log; 2) When the flag BTRFS_INODE_COPY_EVERYTHING is set in the inode's runtime flags, we ended up dropping all the xattr items that were previously logged. Like the case before, this was done only in memory because logging a new name doesn't imply syncing the log. This led to some surprises in scenarios such as the following: 1) write some extents to an inode; 2) fsync the inode; 3) truncate the inode or delete/modify some of its xattrs 4) add a new hard link for that inode 5) fsync some other file, to force the log tree to be durably persisted 6) power failure happens The next time the fs is mounted, the fsync log replay code is executed, and the resulting file doesn't have the content it had when the last fsync against it was performed, instead if has a content matching what it had when the last transaction commit happened. So change the behaviour such that when a new name is logged, only the inode item and reference items are processed. This is easy to reproduce with the test I just made for xfstests, whose main body is: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our test file with some data. $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \ $SCRATCH_MNT/foo | _filter_xfs_io # Make sure the file is durably persisted. sync # Append some data to our file, to increase its size. $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \ $SCRATCH_MNT/foo | _filter_xfs_io # Fsync the file, so from this point on if a crash/power failure happens, our # new data is guaranteed to be there next time the fs is mounted. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Now shrink our file to 5000 bytes. $XFS_IO_PROG -c "truncate 5000" $SCRATCH_MNT/foo # Now do an expanding truncate to a size larger than what we had when we last # fsync'ed our file. This is just to verify that after power failure and # replaying the fsync log, our file matches what it was when we last fsync'ed # it - 12Kb size, first 8Kb of data had a value of 0xaa and the last 4Kb of # data had a value of 0xcc. $XFS_IO_PROG -c "truncate 32K" $SCRATCH_MNT/foo # Add one hard link to our file. This made btrfs drop all of our file's # metadata from the fsync log, including the metadata relative to the # extent we just wrote and fsync'ed. This change was made only to the fsync # log in memory, so adding the hard link alone doesn't change the persisted # fsync log. This happened because the previous truncates set the runtime # flag BTRFS_INODE_NEEDS_FULL_SYNC in the btrfs inode structure. ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link # Now make sure the in memory fsync log is durably persisted. # Creating and fsync'ing another file will do it. # After this our persisted fsync log will no longer have metadata for our file # foo that points to the extent we wrote and fsync'ed before. touch $SCRATCH_MNT/bar $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar # As expected, before the crash/power failure, we should be able to see a file # with a size of 32Kb, with its first 5000 bytes having the value 0xaa and all # the remaining bytes with value 0x00. echo "File content before:" od -t x1 $SCRATCH_MNT/foo # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # After mounting the fs again, the fsync log was replayed. # The expected result is to see a file with a size of 12Kb, with its first 8Kb # of data having the value 0xaa and its last 4Kb of data having a value of 0xcc. # The btrfs bug used to leave the file as it used te be as of the last # transaction commit - that is, with a size of 8Kb with all bytes having a # value of 0xaa. echo "File content after:" od -t x1 $SCRATCH_MNT/foo The test case for xfstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:22:49 UTC
1a4bcf4 Btrfs: fix fsync data loss after adding hard link to inode We have a scenario where after the fsync log replay we can lose file data that had been previously fsync'ed if we added an hard link for our inode and after that we sync'ed the fsync log (for example by fsync'ing some other file or directory). This is because when adding an hard link we updated the inode item in the log tree with an i_size value of 0. At that point the new inode item was in memory only and a subsequent fsync log replay would not make us lose the file data. However if after adding the hard link we sync the log tree to disk, by fsync'ing some other file or directory for example, we ended up losing the file data after log replay, because the inode item in the persisted log tree had an an i_size of zero. This is easy to reproduce, and the following excerpt from my test for xfstests shows this: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create one file with data and fsync it. # This made the btrfs fsync log persist the data and the inode metadata with # a correct inode->i_size (4096 bytes). $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 4K 0 4K" -c "fsync" \ $SCRATCH_MNT/foo | _filter_xfs_io # Now add one hard link to our file. This made the btrfs code update the fsync # log, in memory only, with an inode metadata having a size of 0. ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link # Now force persistence of the fsync log to disk, for example, by fsyncing some # other file. touch $SCRATCH_MNT/bar $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar # Before a power loss or crash, we could read the 4Kb of data from our file as # expected. echo "File content before:" od -t x1 $SCRATCH_MNT/foo # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # After the fsync log replay, because the fsync log had a value of 0 for our # inode's i_size, we couldn't read anymore the 4Kb of data that we previously # wrote and fsync'ed. The size of the file became 0 after the fsync log replay. echo "File content after:" od -t x1 $SCRATCH_MNT/foo Another alternative test, that doesn't need to fsync an inode in the same transaction it was created, is: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create our test file with some data. $XFS_IO_PROG -f -c "pwrite -S 0xaa -b 8K 0 8K" \ $SCRATCH_MNT/foo | _filter_xfs_io # Make sure the file is durably persisted. sync # Append some data to our file, to increase its size. $XFS_IO_PROG -f -c "pwrite -S 0xcc -b 4K 8K 4K" \ $SCRATCH_MNT/foo | _filter_xfs_io # Fsync the file, so from this point on if a crash/power failure happens, our # new data is guaranteed to be there next time the fs is mounted. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Add one hard link to our file. This made btrfs write into the in memory fsync # log a special inode with generation 0 and an i_size of 0 too. Note that this # didn't update the inode in the fsync log on disk. ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link # Now make sure the in memory fsync log is durably persisted. # Creating and fsync'ing another file will do it. touch $SCRATCH_MNT/bar $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/bar # As expected, before the crash/power failure, we should be able to read the # 12Kb of file data. echo "File content before:" od -t x1 $SCRATCH_MNT/foo # Simulate a crash/power loss. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # After mounting the fs again, the fsync log was replayed. # The btrfs fsync log replay code didn't update the i_size of the persisted # inode because the inode item in the log had a special generation with a # value of 0 (and it couldn't know the correct i_size, since that inode item # had a 0 i_size too). This made the last 4Kb of file data inaccessible and # effectively lost. echo "File content after:" od -t x1 $SCRATCH_MNT/foo This isn't a new issue/regression. This problem has been around since the log tree code was added in 2008: Btrfs: Add a write ahead tree log to optimize synchronous operations (commit e02119d5a7b4396c5a872582fddc8bd6d305a70a) Test cases for xfstests follow soon. CC: <stable@vger.kernel.org> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:22:49 UTC
3d84be7 Btrfs: fix BUG_ON in btrfs_orphan_add() when delete unused block group Removing large amount of block group in a transaction may encounters BUG_ON() in btrfs_orphan_add(). That is because btrfs_orphan_reserve_metadata() will grab metadata reservation from transaction handle, and btrfs_delete_unused_bgs() didn't reserve metadata for trnasaction handle when delete unused block group. The problem can be reproduce by following script mntpath=/btrfs loopdev=/dev/loop0 filepath=/home/forrest/image umount $mntpath losetup -d $loopdev truncate --size 1000g $filepath losetup $loopdev $filepath mkfs.btrfs -f $loopdev mount $loopdev $mntpath for j in `seq 1 1 1000`; do fallocate -l 1g $mntpath/$j done # wait cleaner thread remove unused block group sleep 300 The call trace that results from the BUG_ON() is: [ 613.093084] ------------[ cut here ]------------ [ 613.097928] kernel BUG at fs/btrfs/inode.c:3142! [ 613.105855] invalid opcode: 0000 [#1] SMP [ 613.112702] Modules linked in: coretemp(E) crc32_pclmul(E) ghash_clmulni_intel(E) aesni_intel(E) snd_ens1371(E) snd_ac97_codec(E) aes_x86_64(E) lrw(E) gf128mul(E) glue_helper(E) ppdev(E) ac97_bus(E) ablk_helper(E) gameport(E) cryptd(E) snd_rawmidi(E) snd_seq_device(E) snd_pcm(E) vmw_balloon(E) snd_timer(E) snd(E) soundcore(E) serio_raw(E) vmwgfx(E) ttm(E) drm_kms_helper(E) drm(E) vmw_vmci(E) parport_pc(E) shpchp(E) i2c_piix4(E) mac_hid(E) lp(E) parport(E) btrfs(E) xor(E) raid6_pq(E) hid_generic(E) usbhid(E) hid(E) psmouse(E) ahci(E) libahci(E) e1000(E) mptspi(E) mptscsih(E) mptbase(E) floppy(E) vmw_pvscsi(E) vmxnet3(E) [ 613.144196] CPU: 0 PID: 1480 Comm: btrfs-cleaner Tainted: G E 3.19.0-rc7-custom #2 [ 613.148501] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013 [ 613.152694] task: ffff880035cdb1a0 ti: ffff880039cf4000 task.ti: ffff880039cf4000 [ 613.154969] RIP: 0010:[<ffffffffa01441c2>] [<ffffffffa01441c2>] btrfs_orphan_add+0x1d2/0x1e0 [btrfs] [ 613.157780] RSP: 0018:ffff880039cf7c48 EFLAGS: 00010286 [ 613.159560] RAX: 00000000ffffffe4 RBX: ffff88003bd981a0 RCX: ffff88003c9e4000 [ 613.161904] RDX: 0000000000002244 RSI: 0000000000040000 RDI: ffff88003c9e4138 [ 613.164264] RBP: ffff880039cf7c88 R08: 000060ffc0000850 R09: 0000000000000000 [ 613.166507] R10: ffff88003bc4b7a0 R11: ffffea0000eb6740 R12: ffff88003c9c0000 [ 613.168681] R13: ffff88003c102160 R14: ffff88003c9c0458 R15: 0000000000000001 [ 613.170932] FS: 0000000000000000(0000) GS:ffff88003f600000(0000) knlGS:0000000000000000 [ 613.173316] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 613.175227] CR2: 00007f6343537000 CR3: 0000000036329000 CR4: 00000000000407f0 [ 613.177554] Stack: [ 613.178712] ffff880039cf7c88 ffffffffa0182a54 ffff88003c9e4b04 ffff88003c9c7800 [ 613.181297] ffff88003bc4b7a0 ffff88003bd981a0 ffff88003c8db200 ffff88003c2fcc60 [ 613.183782] ffff880039cf7d18 ffffffffa012da97 ffff88003bc4b7a4 ffff88003bc4b7a0 [ 613.186171] Call Trace: [ 613.187493] [<ffffffffa0182a54>] ? lookup_free_space_inode+0x44/0x100 [btrfs] [ 613.189801] [<ffffffffa012da97>] btrfs_remove_block_group+0x137/0x740 [btrfs] [ 613.192126] [<ffffffffa0166912>] btrfs_remove_chunk+0x672/0x780 [btrfs] [ 613.194267] [<ffffffffa012e2ff>] btrfs_delete_unused_bgs+0x25f/0x280 [btrfs] [ 613.196567] [<ffffffffa0135e4c>] cleaner_kthread+0x12c/0x190 [btrfs] [ 613.198687] [<ffffffffa0135d20>] ? check_leaf+0x350/0x350 [btrfs] [ 613.200758] [<ffffffff8108f232>] kthread+0xd2/0xf0 [ 613.202616] [<ffffffff8108f160>] ? kthread_create_on_node+0x180/0x180 [ 613.204738] [<ffffffff8175dabc>] ret_from_fork+0x7c/0xb0 [ 613.206652] [<ffffffff8108f160>] ? kthread_create_on_node+0x180/0x180 [ 613.208741] Code: ff ff 0f 1f 80 00 00 00 00 89 45 c8 3e 80 63 80 fd 48 89 df e8 d0 23 fe ff 8b 45 c8 e9 14 ff ff ff b8 f4 ff ff ff e9 12 ff ff ff <0f> 0b 66 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 66 66 90 55 48 [ 613.216562] RIP [<ffffffffa01441c2>] btrfs_orphan_add+0x1d2/0x1e0 [btrfs] [ 613.218828] RSP <ffff880039cf7c48> [ 613.220382] ---[ end trace 71073106deb8a457 ]--- This patch replace btrfs_join_transaction() with btrfs_start_transaction() in btrfs_delete_unused_bgs() to revent BUG_ON() in btrfs_orphan_add() Signed-off-by: Forrest Liu <forrestl@synology.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:22:49 UTC
dcab6a3 Btrfs: account for large extents with enospc On our gluster boxes we stream large tar balls of backups onto our fses. With 160gb of ram this means we get really large contiguous ranges of dirty data, but the way our ENOSPC stuff works is that as long as it's contiguous we only hold metadata reservation for one extent. The problem is we limit our extents to 128mb, so we'll end up with at least 800 extents so our enospc accounting is quite a bit lower than what we need. To keep track of this make sure we increase outstanding_extents for every multiple of the max extent size so we can be sure to have enough reserved metadata space. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:22:48 UTC
3266789 Btrfs: don't set and clear delalloc for O_DIRECT writes We do this to get the space accounting, but this is just needless churn on the io_tree, so just drop setting/clearing delalloc and just drop the reserved data space when we have a successfull allocation. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:19:14 UTC
3e05bde Btrfs: only adjust outstanding_extents when we do a short write We have this weird dance where we always inc outstanding_extents when we do a O_DIRECT write, even if we allocate the entire range. To get around this we also drop the metadata space if we successfully write. This is an unnecessary dance, we only need to jack up outstanding_extents if we don't satisfy the entire range request in get_blocks_direct, otherwise we are good using our original reservation. So drop the unconditional inc and the drop of the metadata space that we have for the unconditional inc. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:19:14 UTC
13212b5 btrfs: Fix out-of-space bug Btrfs will report NO_SPACE when we create and remove files for several times, and we can't write to filesystem until mount it again. Steps to reproduce: 1: Create a single-dev btrfs fs with default option 2: Write a file into it to take up most fs space 3: Delete above file 4: Wait about 100s to let chunk removed 5: goto 2 Script is like following: #!/bin/bash # Recommend 1.2G space, too large disk will make test slow DEV="/dev/sda16" MNT="/mnt/tmp" dev_size="$(lsblk -bn -o SIZE "$DEV")" || exit 2 file_size_m=$((dev_size * 75 / 100 / 1024 / 1024)) echo "Loop write ${file_size_m}M file on $((dev_size / 1024 / 1024))M dev" for ((i = 0; i < 10; i++)); do umount "$MNT" 2>/dev/null; done echo "mkfs $DEV" mkfs.btrfs -f "$DEV" >/dev/null || exit 2 echo "mount $DEV $MNT" mount "$DEV" "$MNT" || exit 2 for ((loop_i = 0; loop_i < 20; loop_i++)); do echo echo "loop $loop_i" echo "dd file..." cmd=(dd if=/dev/zero of="$MNT"/file0 bs=1M count="$file_size_m") "${cmd[@]}" 2>/dev/null || { # NO_SPACE error triggered echo "dd failed: ${cmd[*]}" exit 1 } echo "rm file..." rm -f "$MNT"/file0 || exit 2 for ((i = 0; i < 10; i++)); do df "$MNT" | tail -1 sleep 10 done done Reason: It is triggered by commit: 47ab2a6c689913db23ccae38349714edf8365e0a which is used to remove empty block groups automatically, but the reason is not in that patch. Code before works well because btrfs don't need to create and delete chunks so many times with high complexity. Above bug is caused by many reason, any of them can trigger it. Reason1: When we remove some continuous chunks but leave other chunks after, these disk space should be used by chunk-recreating, but in current code, only first create will successed. Fixed by Forrest Liu <forrestl@synology.com> in: Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole Reason2: contains_pending_extent() return wrong value in calculation. Fixed by Forrest Liu <forrestl@synology.com> in: Btrfs: fix find_free_dev_extent() malfunction in case device tree has hole Reason3: btrfs_check_data_free_space() try to commit transaction and retry allocating chunk when the first allocating failed, but space_info->full is set in first allocating, and prevent second allocating in retry. Fixed in this patch by clear space_info->full in commit transaction. Tested for severial times by above script. Changelog v3->v4: use light weight int instead of atomic_t to record have_remove_bgs in transaction, suggested by: Josef Bacik <jbacik@fb.com> Changelog v2->v3: v2 fixed the bug by adding more commit-transaction, but we only need to reclaim space when we are really have no space for new chunk, noticed by: Filipe David Manana <fdmanana@gmail.com> Actually, our code already have this type of commit-and-retry, we only need to make it working with removed-bgs. v3 fixed the bug with above way. Changelog v1->v2: v1 will introduce a new bug when delete and create chunk in same disk space in same transaction, noticed by: Filipe David Manana <fdmanana@gmail.com> V2 fix this bug by commit transaction after remove block grops. Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Suggested-by: Filipe David Manana <fdmanana@gmail.com> Suggested-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:19:14 UTC
f55985f Btrfs: scrub, fix sleep in atomic context My previous patch "Btrfs: fix scrub race leading to use-after-free" introduced the possibility to sleep in an atomic context, which happens when the scrub_lock mutex is held at the time scrub_pending_bio_dec() is called - this function can be called under an atomic context. Chris ran into this in a debug kernel which gave the following trace: [ 1928.950319] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:621 [ 1928.967334] in_atomic(): 1, irqs_disabled(): 0, pid: 149670, name: fsstress [ 1928.981324] INFO: lockdep is turned off. [ 1928.989244] CPU: 24 PID: 149670 Comm: fsstress Tainted: G W 3.19.0-rc7-mason+ #41 [ 1929.006418] Hardware name: ZTSYSTEMS Echo Ridge T4 /A9DRPF-10D, BIOS 1.07 05/10/2012 [ 1929.022207] ffffffff81a22cf8 ffff881076e03b78 ffffffff816b8dd9 ffff881076e03b78 [ 1929.037267] ffff880d8e828710 ffff881076e03ba8 ffffffff810856c4 ffff881076e03bc8 [ 1929.052315] 0000000000000000 000000000000026d ffffffff81a22cf8 ffff881076e03bd8 [ 1929.067381] Call Trace: [ 1929.072344] <IRQ> [<ffffffff816b8dd9>] dump_stack+0x4f/0x6e [ 1929.083968] [<ffffffff810856c4>] ___might_sleep+0x174/0x230 [ 1929.095352] [<ffffffff810857d2>] __might_sleep+0x52/0x90 [ 1929.106223] [<ffffffff816bb68f>] mutex_lock_nested+0x2f/0x3b0 [ 1929.117951] [<ffffffff810ab37d>] ? trace_hardirqs_on+0xd/0x10 [ 1929.129708] [<ffffffffa05dc838>] scrub_pending_bio_dec+0x38/0x70 [btrfs] [ 1929.143370] [<ffffffffa05dd0e0>] scrub_parity_bio_endio+0x50/0x70 [btrfs] [ 1929.157191] [<ffffffff812fa603>] bio_endio+0x53/0xa0 [ 1929.167382] [<ffffffffa05f96bc>] rbio_orig_end_io+0x7c/0xa0 [btrfs] [ 1929.180161] [<ffffffffa05f97ba>] raid_write_parity_end_io+0x5a/0x80 [btrfs] [ 1929.194318] [<ffffffff812fa603>] bio_endio+0x53/0xa0 [ 1929.204496] [<ffffffff8130401b>] blk_update_request+0x1eb/0x450 [ 1929.216569] [<ffffffff81096e58>] ? trigger_load_balance+0x78/0x500 [ 1929.229176] [<ffffffff8144c74d>] scsi_end_request+0x3d/0x1f0 [ 1929.240740] [<ffffffff8144ccac>] scsi_io_completion+0xac/0x5b0 [ 1929.252654] [<ffffffff81441c50>] scsi_finish_command+0xf0/0x150 [ 1929.264725] [<ffffffff8144d317>] scsi_softirq_done+0x147/0x170 [ 1929.276635] [<ffffffff8130ace6>] blk_done_softirq+0x86/0xa0 [ 1929.288014] [<ffffffff8105d92e>] __do_softirq+0xde/0x600 [ 1929.298885] [<ffffffff8105df6d>] irq_exit+0xbd/0xd0 (...) Fix this by using a reference count on the scrub context structure instead of locking the scrub_lock mutex. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:19:14 UTC
575849e Btrfs: fix scheduler warning when syncing log We try to lock a mutex while the current task state is not TASK_RUNNING, which results in the following warning when CONFIG_DEBUG_LOCK_ALLOC=y: [30736.772501] ------------[ cut here ]------------ [30736.774545] WARNING: CPU: 9 PID: 19972 at kernel/sched/core.c:7300 __might_sleep+0x8b/0xa8() [30736.783453] do not call blocking ops when !TASK_RUNNING; state=2 set at [<ffffffff8107499b>] prepare_to_wait+0x43/0x89 [30736.786261] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc psmouse parport pcspkr microcode serio_raw evdev processor thermal_sys i2c_piix4 i2c_core button ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod ata_generic virtio_scsi floppy ata_piix libata virtio_pci virtio_ring e1000 virtio scsi_mod [30736.794323] CPU: 9 PID: 19972 Comm: fsstress Not tainted 3.19.0-rc7-btrfs-next-5+ #1 [30736.795821] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [30736.798788] 0000000000000009 ffff88042743fbd8 ffffffff814248ed ffff88043d32f2d8 [30736.800504] ffff88042743fc28 ffff88042743fc18 ffffffff81045338 0000000000000001 [30736.802131] ffffffff81064514 ffffffff817c52d1 000000000000026d 0000000000000000 [30736.803676] Call Trace: [30736.804256] [<ffffffff814248ed>] dump_stack+0x4c/0x65 [30736.805245] [<ffffffff81045338>] warn_slowpath_common+0xa1/0xbb [30736.806360] [<ffffffff81064514>] ? __might_sleep+0x8b/0xa8 [30736.807391] [<ffffffff81045398>] warn_slowpath_fmt+0x46/0x48 [30736.808511] [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89 [30736.809620] [<ffffffff8107499b>] ? prepare_to_wait+0x43/0x89 [30736.810691] [<ffffffff81064514>] __might_sleep+0x8b/0xa8 [30736.811703] [<ffffffff81426eaf>] mutex_lock_nested+0x2f/0x3a0 [30736.812889] [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab [30736.814138] [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf [30736.819878] [<ffffffffa038cfff>] wait_for_writer.isra.12+0x91/0xaa [btrfs] [30736.821260] [<ffffffff810748bd>] ? signal_pending_state+0x31/0x31 [30736.822410] [<ffffffffa0391f0a>] btrfs_sync_log+0x160/0x947 [btrfs] [30736.823574] [<ffffffff8107bfa1>] ? trace_hardirqs_on_caller+0x18f/0x1ab [30736.824847] [<ffffffff8107bfca>] ? trace_hardirqs_on+0xd/0xf [30736.825972] [<ffffffffa036e555>] btrfs_sync_file+0x2b0/0x319 [btrfs] [30736.827684] [<ffffffff8117901a>] vfs_fsync_range+0x21/0x23 [30736.828932] [<ffffffff81179038>] vfs_fsync+0x1c/0x1e [30736.829917] [<ffffffff8117928b>] do_fsync+0x34/0x4e [30736.830862] [<ffffffff811794b3>] SyS_fsync+0x10/0x14 [30736.831819] [<ffffffff8142a512>] system_call_fastpath+0x12/0x17 [30736.832982] ---[ end trace c0b57df60d32ae5c ]--- Fix this my acquiring the mutex after calling finish_wait(), which sets the task's state to TASK_RUNNING. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Chris Mason <clm@fb.com> 14 February 2015, 16:19:14 UTC
eb710b1 Btrfs: Remove unnecessary placeholder in btrfs_err_code "notused" is not necessary. Set 1 to the first entry is enough. Signed-off-by: Takeuchi Satoru <takeuchi_satoru@jp.fujitsu.com Cc: Gui Hecheng <guihc.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:25:51 UTC
b76808f btrfs: cleanup init for list in free-space-cache o removed an unecessary INIT_LIST_HEAD after LIST_HEAD o merge a declare & INIT_LIST_HEAD pair into one LIST_HEAD Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:25:50 UTC
2f08108 btrfs: delete chunk allocation attemp when setting block group ro Below test will fail currently: mkfs.ext4 -F /dev/sda btrfs-convert /dev/sda mount /dev/sda /mnt btrfs device add -f /dev/sdb /mnt btrfs balance start -v -dconvert=raid1 -mconvert=raid1 /mnt The reason is there are some block groups with usage 0, but the whole disk hasn't free space to allocate new chunk, so we even can't set such block group readonly. This patch deletes the chunk allocation when setting block group ro. For META, we already have reserve. But for SYSTEM, we don't have, so the check_system_chunk is still required. Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:25:20 UTC
289454a btrfs: clear bio reference after submit_one_bio() After submit_one_bio(), `bio' can go away. However submit_extent_page() leave `bio' referable if submit_one_bio() failed (e.g. -ENOMEM on OOM). It will cause invalid paging request when submit_extent_page() is called next time. I reproduced ENOMEM case with the following script (need CONFIG_FAIL_PAGE_ALLOC, and CONFIG_FAULT_INJECTION_DEBUG_FS). #!/bin/bash dmesgout=dmesg.txt start=100000 end=300000 step=1000 # btrfs options device=/dev/vdb1 directory=/mnt/btrfs # fault-injection options percent=100 times=3 mkdir -p $directory || exit 1 mount -o compress $device $directory || exit 1 rm -f $directory/file || exit 1 dd if=/dev/zero of=$directory/file bs=1M count=512 || exit 1 for interval in `seq $start $step $end`; do dmesg -C echo 1 > /proc/sys/vm/drop_caches sync export FAILCMD_TYPE=fail_page_alloc ./failcmd.sh -p $percent -t $times -i $interval \ --ignore-gfp-highmem=N --ignore-gfp-wait=N --min-order=0 \ -- \ cat $directory/file > /dev/null dmesg > ${dmesgout} if grep -q BUG: ${dmesgout}; then cat ${dmesgout} exit 1 fi done umount $directory exit 0 Signed-off-by: Naohiro Aota <naota@elisp.net> Tested-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:24:51 UTC
de554a4 Btrfs: fix scrub race leading to use-after-free While running a scrub on a kernel with CONFIG_DEBUG_PAGEALLOC=y, I got the following trace: [68127.807663] BUG: unable to handle kernel paging request at ffff8803f8947a50 [68127.807663] IP: [<ffffffff8107da31>] do_raw_spin_lock+0x94/0x122 [68127.807663] PGD 3003067 PUD 43e1f5067 PMD 43e030067 PTE 80000003f8947060 [68127.807663] Oops: 0000 [#1] SMP DEBUG_PAGEALLOC [68127.807663] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc processor parpo [68127.807663] CPU: 2 PID: 3081 Comm: kworker/u8:5 Not tainted 3.18.0-rc6-btrfs-next-3+ #4 [68127.807663] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [68127.807663] Workqueue: btrfs-btrfs-scrub btrfs_scrub_helper [btrfs] [68127.807663] task: ffff880101fc5250 ti: ffff8803f097c000 task.ti: ffff8803f097c000 [68127.807663] RIP: 0010:[<ffffffff8107da31>] [<ffffffff8107da31>] do_raw_spin_lock+0x94/0x122 [68127.807663] RSP: 0018:ffff8803f097fbb8 EFLAGS: 00010093 [68127.807663] RAX: 0000000028dd386c RBX: ffff8803f8947a50 RCX: 0000000028dd3854 [68127.807663] RDX: 0000000000000018 RSI: 0000000000000002 RDI: 0000000000000001 [68127.807663] RBP: ffff8803f097fbd8 R08: 0000000000000004 R09: 0000000000000001 [68127.807663] R10: ffff880102620980 R11: ffff8801f3e8c900 R12: 000000000001d390 [68127.807663] R13: 00000000cabd13c8 R14: ffff8803f8947800 R15: ffff88037c574f00 [68127.807663] FS: 0000000000000000(0000) GS:ffff88043dd00000(0000) knlGS:0000000000000000 [68127.807663] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [68127.807663] CR2: ffff8803f8947a50 CR3: 00000000b6481000 CR4: 00000000000006e0 [68127.807663] Stack: [68127.807663] ffffffff823942a8 ffff8803f8947a50 ffff8802a3416f80 0000000000000000 [68127.807663] ffff8803f097fc18 ffffffff8141e7c0 ffffffff81072948 000000000034f314 [68127.807663] ffff8803f097fc08 0000000000000292 ffff8803f097fc48 ffff8803f8947a50 [68127.807663] Call Trace: [68127.807663] [<ffffffff8141e7c0>] _raw_spin_lock_irqsave+0x4b/0x55 [68127.807663] [<ffffffff81072948>] ? __wake_up+0x22/0x4b [68127.807663] [<ffffffff81072948>] __wake_up+0x22/0x4b [68127.807663] [<ffffffffa0392327>] scrub_pending_bio_dec+0x32/0x36 [btrfs] [68127.807663] [<ffffffffa0395e70>] scrub_bio_end_io_worker+0x5a3/0x5c9 [btrfs] [68127.807663] [<ffffffff810e0c7c>] ? time_hardirqs_off+0x15/0x28 [68127.807663] [<ffffffff81078106>] ? trace_hardirqs_off_caller+0x4c/0xb9 [68127.807663] [<ffffffffa0372a7c>] normal_work_helper+0xf1/0x238 [btrfs] [68127.807663] [<ffffffffa0372d3d>] btrfs_scrub_helper+0x12/0x14 [btrfs] [68127.807663] [<ffffffff810582d2>] process_one_work+0x1e4/0x3b6 [68127.807663] [<ffffffff81078180>] ? trace_hardirqs_off+0xd/0xf [68127.807663] [<ffffffff81058dc9>] worker_thread+0x1fb/0x2a8 [68127.807663] [<ffffffff81058bce>] ? rescuer_thread+0x219/0x219 [68127.807663] [<ffffffff8105cd75>] kthread+0xdb/0xe3 [68127.807663] [<ffffffff8105cc9a>] ? __kthread_parkme+0x67/0x67 [68127.807663] [<ffffffff8141f1ec>] ret_from_fork+0x7c/0xb0 [68127.807663] [<ffffffff8105cc9a>] ? __kthread_parkme+0x67/0x67 [68127.807663] Code: 39 c2 75 14 8d 8a 00 00 01 00 89 d0 f0 0f b1 0b 39 d0 0f 84 81 00 00 00 4c 69 2d 27 86 99 00 fa 00 00 00 45 31 e4 4d 39 ec 74 2b <8b> 13 89 d0 c1 e8 10 66 39 c2 75 [68127.807663] RIP [<ffffffff8107da31>] do_raw_spin_lock+0x94/0x122 [68127.807663] RSP <ffff8803f097fbb8> [68127.807663] CR2: ffff8803f8947a50 [68127.807663] ---[ end trace d7045aac00a66cd8 ]--- This is due to a race that can happen in a very tiny time window and is illustrated by the following sequence diagram: CPU 1 CPU 2 btrfs_scrub_dev() scrub_bio_end_io_worker() scrub_pending_bio_dec() atomic_dec(&sctx->bios_in_flight) wait sctx->bios_in_flight == 0 wait sctx->workers_pending == 0 mutex_lock(&fs_info->scrub_lock) (...) mutex_lock(&fs_info->scrub_lock) scrub_free_ctx(sctx) kfree(sctx) wake_up(&sctx->list_wait) __wake_up() spin_lock_irqsave(&sctx->list_wait->lock, flags) Another variation of this scenario that results in the same use-after-free issue is: CPU 1 CPU 2 btrfs_scrub_dev() wait sctx->bios_in_flight == 0 scrub_bio_end_io_worker() scrub_pending_bio_dec() __wake_up(&sctx->list_wait) spin_lock_irqsave(&sctx->list_wait->lock, flags) default_wake_function() wake up task at CPU 2 wait sctx->workers_pending == 0 mutex_lock(&fs_info->scrub_lock) (...) mutex_lock(&fs_info->scrub_lock) scrub_free_ctx(sctx) kfree(sctx) spin_unlock_irqrestore(&sctx->list_wait->lock, flags) Fix this by holding the scrub lock while doing the wakeup. This isn't a recent regression, the issue as been around since the scrub feature was added (2011, commit a2de733c78fa7af51ba9670482fa7d392aa67c57). Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:24:50 UTC
001a648 Btrfs: add missing cleanup on sysfs init failure If we failed during initialization of sysfs, we weren't unregistering the top level btrfs sysfs entry nor the debugfs stuff. Not unregistering the top level sysfs entry makes future attempts to reload the btrfs module impossible and the following is reported in dmesg: [ 2246.451296] WARNING: CPU: 3 PID: 10999 at fs/sysfs/dir.c:486 sysfs_warn_dup+0x91/0xb0() [ 2246.451298] sysfs: cannot create duplicate filename '/fs/btrfs' [ 2246.451298] Modules linked in: btrfs(+) raid6_pq xor bnep rfcomm bluetooth binfmt_misc nfsd auth_rpcgss oid_registry nfs_acl nfs lockd fscache sunrpc parport_pc parport psmouse serio_raw pcspkr evbug i2c_piix4 e1000 floppy [last unloaded: btrfs] [ 2246.451310] CPU: 3 PID: 10999 Comm: modprobe Tainted: G W 3.13.0-fdm-btrfs-next-24+ #7 [ 2246.451311] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 2246.451312] 0000000000000009 ffff8800d353fa08 ffffffff816f1da6 0000000000000410 [ 2246.451314] ffff8800d353fa58 ffff8800d353fa48 ffffffff8104a32c ffff88020821a290 [ 2246.451316] ffff88020821a290 ffff88020821a290 ffff8802148f0000 ffff8800d353fb80 [ 2246.451318] Call Trace: [ 2246.451322] [<ffffffff816f1da6>] dump_stack+0x4e/0x68 [ 2246.451324] [<ffffffff8104a32c>] warn_slowpath_common+0x8c/0xc0 [ 2246.451325] [<ffffffff8104a416>] warn_slowpath_fmt+0x46/0x50 [ 2246.451328] [<ffffffff81367dc5>] ? strlcat+0x65/0x90 (....) This fixes the following change: btrfs: add simple debugfs interface commit 1bae30982bc86ab66d61ccb6e22792593b45d44d Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:24:49 UTC
d4b450c Btrfs: fix race between transaction commit and empty block group removal Committing a transaction can race with automatic removal of empty block groups (cleaner kthread), leading to a BUG_ON() in the transaction commit code while running btrfs_finish_extent_commit(). The following sequence diagram shows how it can happen: CPU 1 CPU 2 btrfs_commit_transaction() fs_info->running_transaction = NULL btrfs_finish_extent_commit() find_first_extent_bit() -> found range for block group X in fs_info->freed_extents[] btrfs_delete_unused_bgs() -> found block group X Removed block group X's range from fs_info->freed_extents[] btrfs_remove_chunk() btrfs_remove_block_group(bg X) unpin_extent_range(bg X range) btrfs_lookup_block_group(bg X) -> returns NULL -> BUG_ON() The trace that results from the BUG_ON() is: [48665.187808] ------------[ cut here ]------------ [48665.188032] kernel BUG at fs/btrfs/extent-tree.c:5675! [48665.188032] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC [48665.188032] Modules linked in: dm_flakey dm_mod crc32c_generic btrfs xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop parport_pc evdev microcode [48665.197388] CPU: 2 PID: 31211 Comm: kworker/u32:16 Tainted: G W 3.19.0-rc5-btrfs-next-4+ #1 [48665.197388] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014 [48665.197388] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs] [48665.197388] task: ffff880222011810 ti: ffff8801b56a4000 task.ti: ffff8801b56a4000 [48665.197388] RIP: 0010:[<ffffffffa0350d05>] [<ffffffffa0350d05>] unpin_extent_range+0x6a/0x1ba [btrfs] [48665.197388] RSP: 0018:ffff8801b56a7b88 EFLAGS: 00010246 [48665.197388] RAX: 0000000000000000 RBX: ffff8802143a6000 RCX: ffff8802220120c8 [48665.197388] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff8800a3c140b0 [48665.197388] RBP: ffff8801b56a7bd8 R08: 0000000000000003 R09: 0000000000000000 [48665.197388] R10: 0000000000000000 R11: 000000000000bbac R12: 0000000012e8e000 [48665.197388] R13: ffff8800a3c14000 R14: 0000000000000000 R15: 0000000000000000 [48665.197388] FS: 0000000000000000(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000 [48665.197388] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [48665.197388] CR2: 00007f065e42f270 CR3: 0000000206f70000 CR4: 00000000000006e0 [48665.197388] Stack: [48665.197388] ffff8801b56a7bd8 0000000012ea0000 01ff8800a3c14138 0000000012e9ffff [48665.197388] ffff880141df3dd8 ffff8802143a6000 ffff8800a3c14138 ffff880141df3df0 [48665.197388] ffff880141df3dd8 0000000000000000 ffff8801b56a7c08 ffffffffa0354227 [48665.197388] Call Trace: [48665.197388] [<ffffffffa0354227>] btrfs_finish_extent_commit+0xb0/0xd9 [btrfs] [48665.197388] [<ffffffffa0366b4b>] btrfs_commit_transaction+0x791/0x92c [btrfs] [48665.197388] [<ffffffffa0352432>] flush_space+0x43d/0x452 [btrfs] [48665.197388] [<ffffffff814295c3>] ? _raw_spin_unlock+0x28/0x33 [48665.197388] [<ffffffffa035255f>] btrfs_async_reclaim_metadata_space+0x118/0x164 [btrfs] [48665.197388] [<ffffffff81059917>] ? process_one_work+0x14b/0x3ab [48665.197388] [<ffffffff810599ac>] process_one_work+0x1e0/0x3ab [48665.197388] [<ffffffff81079fa9>] ? trace_hardirqs_off+0xd/0xf [48665.197388] [<ffffffff8105a55b>] worker_thread+0x210/0x2d0 [48665.197388] [<ffffffff8105a34b>] ? rescuer_thread+0x2c3/0x2c3 [48665.197388] [<ffffffff8105e5c0>] kthread+0xef/0xf7 [48665.197388] [<ffffffff81429682>] ? _raw_spin_unlock_irq+0x2d/0x39 [48665.197388] [<ffffffff8105e4d1>] ? __kthread_parkme+0xad/0xad [48665.197388] [<ffffffff81429dec>] ret_from_fork+0x7c/0xb0 [48665.197388] [<ffffffff8105e4d1>] ? __kthread_parkme+0xad/0xad [48665.197388] Code: 85 f6 74 14 49 8b 06 49 03 46 09 49 39 c4 72 1d 4c 89 f7 e8 83 ec ff ff 4c 89 e6 4c 89 ef e8 1e f1 ff ff 48 85 c0 49 89 c6 75 02 <0f> 0b 49 8b 1e 49 03 5e 09 48 8b [48665.197388] RIP [<ffffffffa0350d05>] unpin_extent_range+0x6a/0x1ba [btrfs] [48665.197388] RSP <ffff8801b56a7b88> [48665.272246] ---[ end trace b9c6ab9957521376 ]--- Fix this by ensuring that unpining the block group's range in btrfs_finish_extent_commit() is done in a synchronized fashion with removing the block group's range from freed_extents[] in btrfs_delete_unused_bgs() This race got introduced with the change: Btrfs: remove empty block groups automatically commit 47ab2a6c689913db23ccae38349714edf8365e0a Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:24:48 UTC
e3540ea btrfs: add more checks to btrfs_read_sys_array Verify that the sys_array has enough bytes to read the next item. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:24:39 UTC
1ffb22c btrfs: cleanup, rename a few variables in btrfs_read_sys_array There's a pointer to buffer, integer offset and offset passed as pointer, try to find matching names for them. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:24:28 UTC
ce7fca5 btrfs: add checks for sys_chunk_array sizes Verify that possible minimum and maximum size is set, validity of contents is checked in btrfs_read_sys_array. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:23:43 UTC
75d6ad3 btrfs: more superblock checks, lower bounds on devices and sectorsize/nodesize I received a few crafted images from Jiri, all got through the recently added superblock checks. The lower bounds checks for num_devices and sector/node -sizes were missing and caused a crash during mount. Tools for symbolic code execution were used to prepare the images contents. Reported-by: Jiri Slaby <jslaby@suse.cz> Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 03:20:39 UTC
9cc97d6 Btrfs: Add code to support file creation time This patch adds a new member to the 'struct btrfs_inode' structure to hold the file creation time. Signed-off-by: chandan <chandanrmail@gmail.com> [refreshed, removed btrfs_inode_otime] Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 02:39:16 UTC
a937b97 btrfs: kill btrfs_inode_*time helpers They just opencode taking address of the timespec member. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 03 February 2015, 02:39:07 UTC
95449a1 Btrfs: insert_new_root: Fix lock type of the extent buffer. btrfs_alloc_tree_block() returns an extent buffer on which a blocked lock has been taken. Hence assign the appropriate value to path->locks[level]. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 13:42:23 UTC
78f55e5 Btrfs: fix unused members in struct btrfs_root There isn't any real use of following members of struct btrfs_root so delete them. struct kobject root_kobj; struct completion kobj_unregister; Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:22:37 UTC
0ee13fe btrfs: qgroup: move WARN_ON() to the correct location. In function qgroup_excl_accounting(), we need to WARN when qg->excl is less than what we want to free, same to child and parents. But currently, for parent qgroup, the WARN_ON() is located after freeing qg->excl. It will WARN out even we free it normally. This patch move this WARN_ON() before freeing qg->excl. Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com> Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:22:37 UTC
26455d3 Btrfs: cleanup unused run_most "run_most" is not used anymore. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Satoru Takeuchi <takeuchi_satoru@jp.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:22:16 UTC
5701934 Rename all ref_count to refs in struct refs is better than ref_count to record a struct's ref count. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Suggested-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:50 UTC
ffe2d20 Btrfs: Introduce BTRFS_BLOCK_GROUP_RAID56_MASK to check raid56 simply So we can check raid56 with: (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) instead of long: (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:49 UTC
10f1190 Btrfs: Include map_type in raid_bio Corrent code use many kinds of "clever" way to determine operation target's raid type, as: raid_map != NULL or raid_map[MAX_NR] == RAID[56]_Q_STRIPE To make code easy to maintenance, this patch put raid type into bbio, and we can always get raid type from bbio with a "stupid" way. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:49 UTC
be50a8d Btrfs: Simplify scrub_setup_recheck_block()'s argument scrub_setup_recheck_block() have many arguments but most of them can be get from one of them, we can remove them to make code clean. Some other cleanup for that function also included in this patch. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:49 UTC
b968fed Btrfs: Combine per-page recover in dev-replace and scrub The code are similar, combine them to make code clean and easy to maintenance. Some lost condition are also completed with benefit of this combination. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:49 UTC
8d6738c Btrfs: Separate finding-right-mirror and writing-to-target's process in scrub_handle_errored_block() In corrent code, code of finding-right-mirror and writing-to-target are mixed in logic, if we find a right mirror but failed in writing to target, it will treat as "hadn't found right block", and fill the target with sblock_bad. Actually, "failed in writing to target" does not mean "source block is wrong", this patch separate above two condition in logic, and do some cleanup to make code clean. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:49 UTC
dc5f7a3 Btrfs: Break loop when reach BTRFS_MAX_MIRRORS in scrub_setup_recheck_block() Use break instead of useless loop should be more suitable in this case. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:48 UTC
7653947 Btrfs: btrfs_rm_dev_replace_blocked(): Use wait_event() Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:48 UTC
09dd7a0 Btrfs: Cleanup btrfs_bio_counter_inc_blocked() 1: Remove no-need DEFINE_WAIT(wait) 2: Add likely() for BTRFS_FS_STATE_DEV_REPLACING condition 3: Use while loop instead of goto Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:48 UTC
114ab50 Btrfs: Remove noneed force_write in scrub_write_block_to_dev_replace It is always 1 in this place, because !1 case was already jumped out in previous code. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:48 UTC
b25c94c Btrfs: Fix a jump typo of nodatasum_case to avoid wrong WARN_ON() if (sctx->is_dev_replace && !is_metadata && !have_csum) { ... goto nodatasum_case; } ... nodatasum_case: WARN_ON(sctx->is_dev_replace); In above code, nodatasum_case marker should be moved after WARN_ON(). Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:48 UTC
6e9606d Btrfs: add ref_count and free function for btrfs_bio 1: ref_count is simple than current RBIO_HOLD_BBIO_MAP_BIT flag to keep btrfs_bio's memory in raid56 recovery implement. 2: free function for bbio will make code clean and flexible, plus forced data type checking in compile. Changelog v1->v2: Rename following by David Sterba's suggestion: put_btrfs_bio() -> btrfs_put_bio() get_btrfs_bio() -> btrfs_get_bio() bbio->ref_count -> bbio->refs Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:48 UTC
8e5cfb5 Btrfs: Make raid_map array be inlined in btrfs_bio structure It can make code more simple and clear, we need not care about free bbio and raid_map together. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:47 UTC
cc7539e Btrfs: sort raid_map before adding tgtdev stripes It can avoid complex calculation of real stripes in sort, moreover, we can clean up code of sorting tgtdev_map because it will be in order initially. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:47 UTC
e34c330 Btrfs: fix a out-of-bound access of raid_map We add the number of stripes on target devices into bbio->num_stripes if we are under device replacement, and we just sort the raid_map of those stripes that not on the target devices, so if when we need real raid_map, we need skip the stripes on the target devices. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:06:47 UTC
df8d116 Btrfs: fix fsync log replay for inodes with a mix of regular refs and extrefs If we have an inode with a large number of hard links, some of which may be extrefs, turn a regular ref into an extref, fsync the inode and then replay the fsync log (after a crash/reboot), we can endup with an fsync log that makes the replay code always fail with -EOVERFLOW when processing the inode's references. This is easy to reproduce with the test case I made for xfstests. Its steps are the following: _scratch_mkfs "-O extref" >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create a test file with 3001 hard links. This number is large enough to # make btrfs start using extrefs at some point even if the fs has the maximum # possible leaf/node size (64Kb). echo "hello world" > $SCRATCH_MNT/foo for i in `seq 1 3000`; do ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i` done # Make sure all metadata and data are durably persisted. sync # Now remove one link, add a new one with a new name, add another new one with # the same name as the one we just removed and fsync the inode. rm -f $SCRATCH_MNT/foo_link_0001 ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001 ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_0001 rm -f $SCRATCH_MNT/foo_link_0002 ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3002 ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3003 $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Simulate a crash/power loss. This makes sure the next mount # will see an fsync log and will replay that log. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Check that the number of hard links is correct, we are able to remove all # the hard links and read the file's data. This is just to verify we don't # get stale file handle errors (due to dangling directory index entries that # point to inodes that no longer exist). echo "Link count: $(stat --format=%h $SCRATCH_MNT/foo)" [ -f $SCRATCH_MNT/foo ] || echo "Link foo is missing" for ((i = 1; i <= 3003; i++)); do name=foo_link_`printf "%04d" $i` if [ $i -eq 2 ]; then [ -f $SCRATCH_MNT/$name ] && echo "Link $name found" else [ -f $SCRATCH_MNT/$name ] || echo "Link $name is missing" fi done rm -f $SCRATCH_MNT/foo_link_* cat $SCRATCH_MNT/foo rm -f $SCRATCH_MNT/foo status=0 exit The fix is simply to correct the overflow condition when overwriting a reference item because it was wrong, trying to increase the item in the fs/subvol tree by an impossible amount. Also ensure that we don't insert one normal ref and one ext ref for the same dentry - this happened because processing a dir index entry from the parent in the log happened when the normal ref item was full, which made the logic insert an extref and later when the normal ref had enough room, it would be inserted again when processing the ref item from the child inode in the log. This issue has been present since the introduction of the extrefs feature (2012). A test case for xfstests follows soon. This test only passes if the previous patch titled "Btrfs: fix fsync when extend references are added to an inode" is applied too. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:05 UTC
2c2c452 Btrfs: fix fsync when extend references are added to an inode If we added an extended reference to an inode and fsync'ed it, the log replay code would make our inode have an incorrect link count, which was lower then the expected/correct count. This resulted in stale directory index entries after deleting some of the hard links, and any access to the dangling directory entries resulted in -ESTALE errors because the entries pointed to inode items that don't exist anymore. This is easy to reproduce with the test case I made for xfstests, and the bulk of that test is: _scratch_mkfs "-O extref" >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create a test file with 3001 hard links. This number is large enough to # make btrfs start using extrefs at some point even if the fs has the maximum # possible leaf/node size (64Kb). echo "hello world" > $SCRATCH_MNT/foo for i in `seq 1 3000`; do ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_`printf "%04d" $i` done # Make sure all metadata and data are durably persisted. sync # Add one more link to the inode that ends up being a btrfs extref and fsync # the inode. ln $SCRATCH_MNT/foo $SCRATCH_MNT/foo_link_3001 $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo # Simulate a crash/power loss. This makes sure the next mount # will see an fsync log and will replay that log. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Now after the fsync log replay btrfs left our inode with a wrong link count N, # which was smaller than the correct link count M (N < M). # So after removing N hard links, the remaining M - N directory entries were # still visible to user space but it was impossible to do anything with them # because they pointed to an inode that didn't exist anymore. This resulted in # stale file handle errors (-ESTALE) when accessing those dentries for example. # # So remove all hard links except the first one and then attempt to read the # file, to verify we don't get an -ESTALE error when accessing the inodel # # The btrfs fsck tool also detected the incorrect inode link count and it # reported an error message like the following: # # root 5 inode 257 errors 2001, no inode item, link count wrong # unresolved ref dir 256 index 2978 namelen 13 name foo_link_2976 filetype 1 errors 4, no inode ref # # The fstests framework automatically calls fsck after a test is run, so we # don't need to call fsck explicitly here. rm -f $SCRATCH_MNT/foo_link_* cat $SCRATCH_MNT/foo status=0 exit So make sure an fsync always flushes the delayed inode item, so that the fsync log contains it (needed in order to trigger the link count fixup code) and fix the extref counting function, which always return -ENOENT to its caller (and made it assume there were always 0 extrefs). This issue has been present since the introduction of the extrefs feature (2012). A test case for xfstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:04 UTC
d36808e Btrfs: fix directory inconsistency after fsync log replay If we have an inode (file) with a link count greater than 1, remove one of its hard links, fsync the inode, power fail/crash and then replay the fsync log on the next mount, we end up getting the parent directory's metadata inconsistent - its i_size still reflects the deleted hard link and has dangling index entries (with no matching inode reference entries). This prevents the directory from ever being deletable, as its i_size can never decrease to BTRFS_EMPTY_DIR_SIZE even if all of its children inodes are deleted, and the dangling index entries can never be removed (as they point to an inode that does not exist anymore). This is easy to reproduce with the following excerpt from the test case for xfstests that I just made: _scratch_mkfs >> $seqres.full 2>&1 _init_flakey _mount_flakey # Create a test file with 2 hard links in the same directory. mkdir -p $SCRATCH_MNT/a/b echo "hello world" > $SCRATCH_MNT/a/b/foo ln $SCRATCH_MNT/a/b/foo $SCRATCH_MNT/a/b/bar # Make sure all metadata and data are durably persisted. sync # Now remove one of the hard links and fsync the inode. rm -f $SCRATCH_MNT/a/b/bar $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/a/b/foo # Simulate a crash/power loss. This makes sure the next mount # will see an fsync log and will replay that log. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey # Remove the last hard link of the file and attempt to remove its parent # directory - this failed in btrfs because the fsync log and replay code # didn't decrement the parent directory's i_size and left dangling directory # index entries - this made the btrfs rmdir implementation always fail with # the error -ENOTEMPTY. # # The dangling directory index entries were visible to user space, but it was # impossible to do anything on them (unlink, open, read, write, stat, etc) # because the inode they pointed to did not exist anymore. # # The parent directory's metadata inconsistency (stale index entries) was # also detected by btrfs' fsck tool, which is run automatically by the fstests # framework when the test finishes. The error message reported by fsck was: # # root 5 inode 259 errors 2001, no inode item, link count wrong # unresolved ref dir 258 index 3 namelen 3 name bar filetype 1 errors 4, no inode ref # rm -f $SCRATCH_MNT/a/b/* rmdir $SCRATCH_MNT/a/b rmdir $SCRATCH_MNT/a To fix this just make sure that after an unlink, if the inode is fsync'ed, he parent inode is fully logged in the fsync log. A test case for xfstests follows soon. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:04 UTC
6219872 Btrfs: lookup for block group only if needed when freeing a tree block Very often our extent buffer's header generation doesn't match the current transaction's id or it is also referenced by other trees (snapshots), so we don't need the corresponding block group cache object. Therefore only search for it if we are going to use it, so we avoid an unnecessary search in the block groups rbtree (and acquiring and releasing its spinlock). Freeing a tree block is performed when COWing or deleting a node/leaf, which implies we are holding the node/leaf's parent node lock, therefore reducing the amount of time spent when freeing a tree block helps reducing the amount of time we are holding the parent node's lock. For example, for a run of xfstests/generic/083, the block group cache object was needed only 682 times for a total of 226691 calls to free a tree block. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:04 UTC
730a78c btrfs: remove a no-op unfreeze superbock callback Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:04 UTC
9ee49a0 btrfs: switch extent_state state to unsigned Currently there's a 4B hole in the structure between refs and state and there are only 16 bits used so we can make it unsigned. This will get a better packing and may save some stack space for local variables. The size of extent_state gets reduced by 8B and there are usually a lot of slab objects. struct extent_state { u64 start; /* 0 8 */ u64 end; /* 8 8 */ struct rb_node rb_node; /* 16 24 */ wait_queue_head_t wq; /* 40 24 */ /* --- cacheline 1 boundary (64 bytes) --- */ atomic_t refs; /* 64 4 */ /* XXX 4 bytes hole, try to pack */ long unsigned int state; /* 72 8 */ u64 private; /* 80 8 */ /* size: 88, cachelines: 2, members: 7 */ /* sum members: 84, holes: 1, sum holes: 4 */ /* last cacheline: 24 bytes */ }; Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:04 UTC
5efa049 btrfs: set proper message level for skinny metadata This has been confusing people for too long, the message is really just informative. CC: <stable@vger.kernel.org> # 3.10+ Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:03 UTC
f0954c6 btrfs: update message levels after checksum errors The errors are worth noting and might get missed with INFO level. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:03 UTC
aa8ee31 btrfs: update message levels during failed mount All error conditions from open_ctree shall be ERR. Warning would suggest that something's wrong and we can continue. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:03 UTC
68b663d btrfs: update message levels for errors Several messages that point to some internal problem, level INFO is wrong here. Signed-off-by: David Sterba <dsterba@suse.cz> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:03 UTC
a8df6fe Btrfs: fix setup_leaf_for_split() to avoid leaf corruption We were incorrectly detecting when the target key didn't exist anymore after releasing the path and re-searching the tree. This could make us split or duplicate (btrfs_split_item() and btrfs_duplicate_item() are its only callers at the moment) an item when we should not. For the case of duplicating an item, we currently only duplicate checksum items (csum tree) and file extent items (fs/subvol trees). For the checksum items we end up overriding the item completely, but for file extent items we update only some of their fields in the copy (done in __btrfs_drop_extents), which means we can end up having a logical corruption for some values. Also for the case where we duplicate a file extent item it will make us produce a leaf with a wrong key order, as btrfs_duplicate_item() advances us to the next slot and then its caller sets a smaller key on the new item at that slot (like in __btrfs_drop_extents() e.g.). Alternatively if the tree search in setup_leaf_for_split() leaves with path->slots[0] == btrfs_header_nritems(path->nodes[0]), we end up accessing beyond the leaf's end (when we check if the item's size has changed) and make our caller insert an item at the invalid slot btrfs_header_nritems(path->nodes[0]) + 1, causing an invalid memory access if the leaf is full or nearly full. This issue has been present since the introduction of this function in 2009: Btrfs: Add btrfs_duplicate_item commit ad48fd754676bfae4139be1a897b1ea58f9aaf21 Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 02:02:03 UTC
57bbddd Merge branch 'cleanup/blocksize-diet-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 22 January 2015, 01:49:35 UTC
d354183 Merge branch 'fix/find-item-path-leak' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus 22 January 2015, 01:45:25 UTC
ce93ec5 Btrfs: track dirty block groups on their own list Currently any time we try to update the block groups on disk we will walk _all_ block groups and check for the ->dirty flag to see if it is set. This function can get called several times during a commit. So if you have several terabytes of data you will be a very sad panda as we will loop through _all_ of the block groups several times, which makes the commit take a while which slows down the rest of the file system operations. This patch introduces a dirty list for the block groups that we get added to when we dirty the block group for the first time. Then we simply update any block groups that have been dirtied since the last time we called btrfs_write_dirty_block_groups. This allows us to clean up how we write the free space cache out so it is much cleaner. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 01:36:52 UTC
e7070be Btrfs: change how we track dirty roots I've been overloading root->dirty_list to keep track of dirty roots and which roots need to have their commit roots switched at transaction commit time. This could cause us to lose an update to the root which could corrupt the file system. To fix this use a state bit to know if the root is dirty, and if it isn't set we go ahead and move the root to the dirty list. This way if we re-dirty the root after adding it to the switch_commit list we make sure to update it. This also makes it so that the extent root is always the last root on the dirty list to try and keep the amount of churn down at this point in the commit. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com> 22 January 2015, 01:35:49 UTC
ec6f34e Linux 3.19-rc5 18 January 2015, 06:02:20 UTC
d0ac5d8 Merge tag 'armsoc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc Pull ARM SoC fixes from Olof Johansson: "We've been sitting on our fixes branch for a while, so this batch is unfortunately on the large side. A lot of these are tweaks and fixes to device trees, fixing various bugs around clocks, reg ranges, etc. There's also a few defconfig updates (which are on the late side, no more of those). All in all the diffstat is bigger than ideal at this time, but nothing in here seems particularly risky" * tag 'armsoc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (31 commits) reset: sunxi: fix spinlock initialization ARM: dts: disable CCI on exynos5420 based arndale-octa drivers: bus: check cci device tree node status ARM: rockchip: disable jtag/sdmmc autoswitching on rk3288 ARM: nomadik: fix up leftover device tree pins ARM: at91: board-dt-sama5: add phy_fixup to override NAND_Tree ARM: at91/dt: sam9263: Add missing clocks to lcdc node ARM: at91: sama5d3: dt: correct the sound route ARM: at91/dt: sama5d4: fix the timer reg length ARM: exynos_defconfig: Enable LM90 driver ARM: exynos_defconfig: Enable options for display panel support arm: dts: Use pmu_system_controller phandle for dp phy ARM: shmobile: sh73a0 legacy: Set .control_parent for all irqpin instances ARM: dts: berlin: correct BG2Q's SM GPIO location. ARM: dts: berlin: add broken-cd and set bus width for eMMC in Marvell DMP DT ARM: dts: berlin: fix io clk and add missing core clk for BG2Q sdhci2 host ARM: dts: Revert disabling of smc91x for n900 ARM: dts: imx51-babbage: Fix ULPI PHY reset modelling ARM: dts: dra7-evm: fix qspi device tree partition size ARM: omap2plus_defconfig: use CONFIG_CPUFREQ_DT ... 18 January 2015, 06:00:40 UTC
12ba857 Merge tag 'clk-fixes-for-linus' of git://git.linaro.org/people/mike.turquette/linux Pull clock driver fixes from Mike Turquette: "Small number of fixes for clock drivers and a single null pointer dereference fix in the framework core code. The driver fixes vary from fixing section mismatch warnings to preventing machines from hanging (and preventing developers from crying)" * tag 'clk-fixes-for-linus' of git://git.linaro.org/people/mike.turquette/linux: clk: fix possible null pointer dereference Revert "clk: ppc-corenet: Fix Section mismatch warning" clk: rockchip: fix deadlock possibility in cpuclk clk: berlin: bg2q: remove non-exist "smemc" gate clock clk: at91: keep slow clk enabled to prevent system hang clk: rockchip: fix rk3288 cpuclk core dividers clk: rockchip: fix rk3066 pll lock bit location clk: rockchip: Fix clock gate for rk3188 hclk_emem_peri clk: rockchip: add CLK_IGNORE_UNUSED flag to fix rk3066/rk3188 USB Host 18 January 2015, 03:29:11 UTC
901b208 Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI fixes from James Bottomley: "This is one fix for a Multiqueue sleeping in invalid context problem and a MAINTAINER file update for Qlogic" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: ->queue_rq can't sleep MAINTAINERS: Update maintainer list for qla4xxx 18 January 2015, 03:26:52 UTC
c7662fc clk: fix possible null pointer dereference The commit 646cafc6 (clk: Change clk_ops->determine_rate to return a clk_hw as the best parent) opens a possibility for null pointer dereference, fix this. Signed-off-by: Stanimir Varbanov <svarbanov@mm-sol.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Michael Turquette <mturquette@linaro.org> 17 January 2015, 19:33:57 UTC
176a107 Revert "clk: ppc-corenet: Fix Section mismatch warning" This reverts commit da788acb28386aa896224e784954bb73c99ff26c. That commit tried to fix the section mismatch warning by moving the ppc_corenet_clk_driver struct to init section. This is definitely wrong because the kernel would free the memories occupied by this struct after boot while this driver is still registered in the driver core. The kernel would panic when accessing this driver struct. Cc: stable@vger.kernel.org # 3.17 Signed-off-by: Kevin Hao <haokexin@gmail.com> Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Michael Turquette <mturquette@linaro.org> 17 January 2015, 19:27:16 UTC
a5e1baf clk: rockchip: fix deadlock possibility in cpuclk Lockdep reported a possible deadlock between the cpuclk lock and for example the i2c driver. CPU0 CPU1 ---- ---- lock(clk_lock); local_irq_disable(); lock(&(&i2c->lock)->rlock); lock(clk_lock); <Interrupt> lock(&(&i2c->lock)->rlock); *** DEADLOCK *** The generic clock-types of the core ccf already use spin_lock_irqsave when touching clock registers, so do the same for the cpuclk. Signed-off-by: Heiko Stuebner <heiko@sntech.de> Reviewed-by: Doug Anderson <dianders@chromium.org> Signed-off-by: Michael Turquette <mturquette@linaro.org> [mturquette@linaro.org: removed initialization of "flags"] 17 January 2015, 19:22:39 UTC
298e320 Merge branch 'fixes' of git://git.infradead.org/users/vkoul/slave-dma Pull dmaengine fixes from Vinod Koul: "Two patches, the first by Andy to fix dw dmac runtime pm and second one by me to fix the dmaengine headers in MAINTAINERS" * 'fixes' of git://git.infradead.org/users/vkoul/slave-dma: dmaengine: dw: balance PM runtime calls MAINTAINERS: dmaengine: fix the header file for dmaengine 17 January 2015, 18:26:24 UTC
59b2858 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Ingo Molnar: "Mostly tooling fixes, but also two PMU driver fixes" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf tools powerpc: Use dwfl_report_elf() instead of offline. perf tools: Fix segfault for symbol annotation on TUI perf test: Fix dwarf unwind using libunwind. perf tools: Avoid build splat for syscall numbers with uclibc perf tools: Elide strlcpy warning with uclibc perf tools: Fix statfs.f_type data type mismatch build error with uclibc tools: Remove bitops/hweight usage of bits in tools/perf perf machine: Fix __machine__findnew_thread() error path perf tools: Fix building error in x86_64 when dwarf unwind is on perf probe: Propagate error code when write(2) failed perf/x86/intel: Fix bug for "cycles:p" and "cycles:pp" on SLM perf/rapl: Fix sysfs_show() initialization for RAPL PMU 17 January 2015, 18:24:30 UTC
d01de23 Merge tag 'perf-urgent-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/urgent Pull perf/urgent fixes from Arnaldo Carvalho de Melo: - Fix segfault when using both the map symtab viewer and annotation in the TUI (Namhyung Kim). - uClibc build fixes (Alexey Brodkin, Vineet Gupta). - bitops/hweight were moved from tools/perf/ too tools/include, move some leftovers (Arnaldo Carvalho de Melo) - Fix dwarf unwind x86_64 build error (Namhyung Kim) - Fix __machine__findnew_thread() error path (Namhyung Kim) - Propagate error code when write(2) failed in 'perf probe' (Namhyung Kim) - Use dwfl_report_elf() instead of offline in powerpc bits to properly handle non prelinked DSOs (Sukadev Bhattiprolu). - Fix dwarf unwind using libunwind in 'perf test' (Wang Nan) Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> 17 January 2015, 10:04:35 UTC
966903a Merge tag 'samsung-fixes-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung into fixes Merge "Samsung fixes for v3.19" from Kukjin Kim: Samsung fixes for v3.19 - exynos_defconfig: enable LM90 driver and display panel support - HWMON - SENSORS_LM90 - Direct Rendering Manager (DRM) - DRM bridge registration and lookup framework - Parade ps8622/ps8625 eDP/LVDS bridge - NXP ptn3460 eDP/LVDS bridge - Exynos Fully Interactive Mobile Display controller (FIMD) - Panel registration and lookup framework - Simple panels - Backlight & LCD device support - use pmu_system_controller phandle for dp phy : DP PHY requires pmu_system_controller to handle PMU reg. now * tag 'samsung-fixes-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kgene/linux-samsung: ARM: exynos_defconfig: Enable LM90 driver ARM: exynos_defconfig: Enable options for display panel support arm: dts: Use pmu_system_controller phandle for dp phy Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:11:37 UTC
41544f9 reset: sunxi: fix spinlock initialization Call spin_lock_init() before the spinlocks are used, both in early init and probe functions preventing a lockdep splat. I have been observing lockdep complaining [1] during boot on my a80 optimus [2] when CONFIG_PROVE_LOCKING has been enabled. This patch resolves the splat, and has been tested on a few other sunxi platforms without issue. [1] http://storage.kernelci.org/next/next-20150107/arm-multi_v7_defconfig+CONFIG_PROVE_LOCKING=y/lab-tbaker/boot-sun9i-a80-optimus.html [2] http://kernelci.org/boot/?a80-optimus Signed-off-by: Tyler Baker <tyler.baker@linaro.org> Cc: <stable@vger.kernel.org> Acked-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:11:31 UTC
a30e931 Merge tag 'renesas-soc-fixes-for-v3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/horms/renesas into fixes Merge "Renesas ARM Based SoC Fixes for v3.19" from Simon Horman: Renesas ARM Based SoC Fixes for v3.19 This pull request is based on the last round of SoC updates for v3.19, Fourth Round of Renesas ARM Based SoC Updates for v3.19, tagged as renesas-soc3-for-v3.19, merged into your next/soc branch and included in v3.19-rc1. - ARM: shmobile: r8a7740: Instantiate GIC from C board code in legacy builds Set .control_parent for all irqpin instances for sh73a0 SoC when booting using legacy C. - ARM: shmobile: r8a7740: Instantiate GIC from C board code in legacy builds This fixes a long standing problem which has been present since the sh73a0 SoC started using the INTC External IRQ pin driver. The patch that introduced the problem is 341eb5465f67437a ("ARM: shmobile: INTC External IRQ pin driver on sh73a0") which was included in v3.10. * tag 'renesas-soc-fixes-for-v3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/horms/renesas: ARM: shmobile: sh73a0 legacy: Set .control_parent for all irqpin instances ARM: shmobile: r8a7740: Instantiate GIC from C board code in legacy builds 17 January 2015, 03:10:43 UTC
25217fe ARM: dts: disable CCI on exynos5420 based arndale-octa The arndale-octa board was giving "imprecise external aborts" during boot-up with MCPM enabled. CCI enablement of the boot cluster was found to be the cause of these aborts (possibly because the secure f/w was not allowing it). Hence, disable CCI for the arndale-octa board. Signed-off-by: Abhilash Kesavan <a.kesavan@samsung.com> Tested-by: Krzysztof Kozlowski <k.kozlowski@samsung.com> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Tyler Baker <tyler.baker@linaro.org> Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:41 UTC
896ddd6 drivers: bus: check cci device tree node status The arm-cci driver completes the probe sequence even if the cci node is marked as disabled. Add a check in the driver to honour the cci status in the device tree. Signed-off-by: Abhilash Kesavan <a.kesavan@samsung.com> Acked-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Nicolas Pitre <nico@linaro.org> Tested-by: Sudeep Holla <sudeep.holla@arm.com> Tested-by: Kevin Hilman <khilman@linaro.org> Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:41 UTC
6fda93b Merge tag 'at91-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nferre/linux-at91 into fixes Merge "at91: fixes for 3.19 #1 (ter)" from Nicolas Ferre: First fixes batch for AT91 on 3.19: - fix some DT entries - correct clock entry for the at91sam9263 LCD - add a phy_fixup for Eth1 on sama5d4 * tag 'at91-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nferre/linux-at91: ARM: at91: board-dt-sama5: add phy_fixup to override NAND_Tree ARM: at91/dt: sam9263: Add missing clocks to lcdc node ARM: at91: sama5d3: dt: correct the sound route ARM: at91/dt: sama5d4: fix the timer reg length Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:40 UTC
c9b75d5 ARM: rockchip: disable jtag/sdmmc autoswitching on rk3288 rk3288 SoCs have a function to automatically switch between jtag/sdmmc pinmux settings depending on the card state. This collides with a lot of assumptions. It only works when using the internal card-detect mechanism and breaks horribly when using either the normal card-detect via the slot-gpio function or via any other pin. Also there is of course no link between the mmc and jtag on the software-side, so the jtag clocks may very well be disabled when the card is ejected and the soc switches back to the jtag pinmux. Leaving the switching function enabled did result in mmc timeouts and rcu stalls thus hanging the system on 3.19-rc1. Therefore disable it in all cases, as we expect the devicetree to explicitly select either mmc or jtag pinmuxes anyway. Signed-off-by: Heiko Stuebner <heiko@sntech.de> Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:39 UTC
1dbb36b Merge tag 'berlin-fixes-for-3.19-1' of git://git.infradead.org/users/hesselba/linux-berlin into fixes Merge "ARM: berlin: Fixes for v3.19 (round 1)" from Sebastian Hesselbarth: Marvell Berlin fixes for v3.19 round 1: - SDHCI DT fixes for BG2Q and BG2Q reference board - BG2Q SM GPIO DT node relocation * tag 'berlin-fixes-for-3.19-1' of git://git.infradead.org/users/hesselba/linux-berlin: ARM: dts: berlin: correct BG2Q's SM GPIO location. ARM: dts: berlin: add broken-cd and set bus width for eMMC in Marvell DMP DT ARM: dts: berlin: fix io clk and add missing core clk for BG2Q sdhci2 host Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:39 UTC
259e438 ARM: nomadik: fix up leftover device tree pins We altered the device tree bindings for the Nomadik family of pin controllers to be standard, this file was merged out-of-order so we missed fixing this. Fix it up. Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:38 UTC
e3db221 Merge tag 'omap-for-v3.19/fixes-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap into fixes Merge "omap fixes against v3.19-rc1" from Tony Lindgren: Fixes for omaps mostly to deal with dra7 timer issues and hypervisor mode. The other fixes are minor fixes for various boards. The summary of the fixes is: - Fix real-time counter rate typos for some frequencies - Fix counter frequency drift for am572x - Fix booting of secondary CPU in HYP mode - Fix n900 board name for legacy user space - Fix cpufreq in omap2plus_defconfig after Kconfig change - Fix dra7 qspi partitions And also, let's re-enable smc91x on some n900 boards that we have sitting in a few test boot systems after the boot loader dependencies got fixed. * tag 'omap-for-v3.19/fixes-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap: ARM: dts: Revert disabling of smc91x for n900 ARM: dts: dra7-evm: fix qspi device tree partition size ARM: omap2plus_defconfig: use CONFIG_CPUFREQ_DT ARM: OMAP2+: Fix n900 board name for legacy user space ARM: omap5/dra7xx: Enable booting secondary CPU in HYP mode ARM: dra7xx: Fix counter frequency drift for AM572x errata i856 ARM: omap5/dra7xx: Fix frequency typos Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:37 UTC
3be8142 Merge tag 'imx-fixes-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo/linux into fixes Merge "ARM: imx: fixes for 3.19" from Shawn Guo: The i.MX fixes for 3.19: - One fix for incorrect i.MX25 SPI1 clock assignment in device tree, which causes system hang when accessing SPI1. - Correct i.MX6SX QSPI parent clock configuration to fix a kernel Oops. - Fix ULPI PHY reset modelling on imx51-babbage board to remove the dependency on bootloader for USB3317 ULPI PHY reset. - Correct video divider setting on i.MX6Q rev T0 1.0 to fix the issue that HDMI is not working at high resolution on T0 1.0. - One incremental fix for CODA960 VPU enabling in device tree to correct interrupt order. - LS1021A SCFG block works in BE mode, add device tree property big-endian to make it right. * tag 'imx-fixes-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo/linux: ARM: dts: imx51-babbage: Fix ULPI PHY reset modelling ARM: imx6sx: Set PLL2 as parent of QSPI clocks ARM: dts: imx25: Fix the SPI1 clocks ARM: clk-imx6q: fix video divider for rev T0 1.0 ARM: dts: imx6qdl: Fix CODA960 interrupt order ARM: ls1021a: dtsi: add 'big-endian' property for scfg node Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:37 UTC
1591dc4 Merge tag 'v3.19-rockchip-dtsfixes1' of git://git.kernel.org/pub/scm/linux/kernel/git/mmind/linux-rockchip into fixes Merge "ARM: rockchip: dts fix for 3.19" from Heiko Stübner: Increase drive-strength to sdmmc pins on rk3288-evb to fix an issue with the fixed highspeed card detection. * tag 'v3.19-rockchip-dtsfixes1' of git://git.kernel.org/pub/scm/linux/kernel/git/mmind/linux-rockchip: ARM: dts: rockchip: bump sd card pin drive strength up on rk3288-evb Signed-off-by: Olof Johansson <olof@lixom.net> 17 January 2015, 03:10:36 UTC
back to top